Secondary electro-spray ionization (SESI) is an ambient ionization technique for the analysis of trace concentrations of vapors, where a nano-electrospray produces charging agents that collide with the analyte molecules directly in gas-phase. In the subsequent reaction, the charge is transferred and vapors get ionized, most molecules get protonated (in positive mode) and deprotonated (in negative mode). SESI works in combination with mass spectrometry or ion-mobility spectrometry.
The fact that trace concentrations of gases in contact with an electrospray plume were efficiently ionized was first observed by Fenn and colleagues when they noted that tiny concentrations of plasticizers produced intense peaks in their mass spectra. However, it was not until 2000 when this problem was reframed as a solution, when Hill and coworkers used an electrospray to ionize molecules in the gas phase, and named the technique Secondary Electrospray Ionization. In 2007, the almost simultaneous works of Zenobi and Pablo Sinues applied SESI to breath analysis for the first time, marking the beginning of a fruitful field or research. With sensitivities in the low pptv range (10−12), SESI has been used in other applications, where the detection of low volatility vapors is important.
Detecting low volatility species in the gas phase is important because larger molecules tend to have higher biological significance. Low volatility species have been overlooked because it is technically difficult to detect them, as they are in very low concentration, and they tend to condensate in the inner piping of instruments. However, as this problem is solved, and new instruments are able to handle larger and more specific molecules, the ability to perform on-line, real time analysis of molecules naturally released in the air, even at minute concentrations, is attracting attention to this ionization technique.
In the early days of SESI, two ionization mechanisms were under debate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers protein mass spectrometry, proteomics fundamentals, ionization sources, analyzers, detectors, mass accuracy, resolution, and various ionization methods.
The goal is to provide students with a complete overview of the principles and key applications of modern mass spectrometry and meet the current practical demand of EPFL researchers to improve structu
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
Proton-transfer-reaction mass spectrometry (PTR-MS) is an analytical chemistry technique that uses gas phase hydronium reagent ions which are produced in an ion source. PTR-MS is used for online monitoring of volatile organic compounds (VOCs) in ambient air and was developed in 1995 by scientists at the Institut für Ionenphysik at the Leopold-Franzens University in Innsbruck, Austria. A PTR-MS instrument consists of an ion source that is directly connected to a drift tube (in contrast to SIFT-MS no mass filter is interconnected) and an analyzing system (quadrupole mass analyzer or time-of-flight mass spectrometer).
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture. Gas chromatography is also sometimes known as vapor-phase chromatography (VPC), or gas–liquid partition chromatography (GLPC).
Volatile organic compounds (VOCs) are organic compounds that have a high vapor pressure at room temperature. High vapor pressure correlates with a low boiling point, which relates to the number of the sample's molecules in the surrounding air, a trait known as volatility. VOCs are responsible for the odor of scents and perfumes as well as pollutants. VOCs play an important role in communication between animals and plants, e.g. attractants for pollinators, protection from predation, and even inter-plant interactions.
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature- ...
Washington2024
, ,
The present study evaluates the ionization efficiency (IE) of linear and branched C2–C14 dicarboxylic acids (DCAs) by electrospray ionization (ESI) under different conditions. The influence of the concentration of organic modifier (MeOH); mobile phase addi ...
2022
Solving native structures of such large molecules, like biomolecules, is often challenging, particularly due to the potentially infinite number of non-covalent interactions with water. In this thesis, we report the use of cold ion gas-phase action spectros ...