Concept

Secondary electrospray ionization

Résumé
Secondary electro-spray ionization (SESI) is an ambient ionization technique for the analysis of trace concentrations of vapors, where a nano-electrospray produces charging agents that collide with the analyte molecules directly in gas-phase. In the subsequent reaction, the charge is transferred and vapors get ionized, most molecules get protonated (in positive mode) and deprotonated (in negative mode). SESI works in combination with mass spectrometry or ion-mobility spectrometry. The fact that trace concentrations of gases in contact with an electrospray plume were efficiently ionized was first observed by Fenn and colleagues when they noted that tiny concentrations of plasticizers produced intense peaks in their mass spectra. However, it was not until 2000 when this problem was reframed as a solution, when Hill and coworkers used an electrospray to ionize molecules in the gas phase, and named the technique Secondary Electrospray Ionization. In 2007, the almost simultaneous works of Zenobi and Pablo Sinues applied SESI to breath analysis for the first time, marking the beginning of a fruitful field or research. With sensitivities in the low pptv range (10−12), SESI has been used in other applications, where the detection of low volatility vapors is important. Detecting low volatility species in the gas phase is important because larger molecules tend to have higher biological significance. Low volatility species have been overlooked because it is technically difficult to detect them, as they are in very low concentration, and they tend to condensate in the inner piping of instruments. However, as this problem is solved, and new instruments are able to handle larger and more specific molecules, the ability to perform on-line, real time analysis of molecules naturally released in the air, even at minute concentrations, is attracting attention to this ionization technique. In the early days of SESI, two ionization mechanisms were under debate.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.