In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.
A vector field whose curl is zero is called irrotational. The curl is a form of differentiation for vector fields. The corresponding form of the fundamental theorem of calculus is Stokes' theorem, which relates the surface integral of the curl of a vector field to the line integral of the vector field around the boundary curve.
The notation curl F is more common in North America. In many European countries, particularly in classic scientific literature, the alternative notation rot F is traditionally used, which comes from the "rate of rotation" that it represents. To avoid confusion, modern authors tend to use the cross product notation with the del (nabla) operator, as in , which also reveals the relation between curl (rotor), divergence, and gradient operators.
Unlike the gradient and divergence, curl as formulated in vector calculus does not generalize simply to other dimensions; some generalizations are possible, but only in three dimensions is the geometrically defined curl of a vector field again a vector field. This deficiency is a direct consequence of the limitations of vector calculus; on the other hand, when expressed as an antisymmetric tensor field via the wedge operator of geometric calculus, the curl generalizes to all dimensions. The circumstance is similar to that attending the 3-dimensional cross product, and indeed the connection is reflected in the notation for the curl.
The name "curl" was first suggested by James Clerk Maxwell in 1871 but the concept was apparently first used in the construction of an optical field theory by James MacCullagh in 1839.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et de l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations.
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields.
Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field (a function defined on a multi-dimensional domain), it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field (or sometimes of a vector field, as in the Navier–Stokes equations); the divergence of a vector field; or the curl (rotation) of a vector field.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
In the class of Sobolev vector fields in R-n of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity cond ...
We introduce a construction of subspaces of the spaces of tangential vector, n-vector, and tensor fields on surfaces. The resulting subspaces can be used as the basis of fast approximation algorithms for design and processing problems that involve tangenti ...
We define a conforming B-spline discretisation of the de Rham complex on multipatch geometries. We introduce and analyse the properties of interpolation operators onto these spaces which commute w.r.t. the surface differential operators. Using these result ...