L'opérateur rotationnel est un opérateur différentiel aux dérivées partielles qui, à un champ vectoriel tridimensionnel, noté ou , fait correspondre un autre champ noté au choix :
ou bien ou bien ou bien ou bien
selon les conventions de notations utilisées pour les vecteurs.
vignette|Exemple d'un champ de vecteurs ayant un rotationnel uniforme, analogue à un fluide tournant autour d'un point central.
Plus difficile à se représenter aussi précisément que le gradient et la divergence, il exprime la tendance qu'ont les lignes de champ d'un champ vectoriel à tourner autour d'un point : sa circulation locale sur un petit lacet entourant ce point est non nulle quand son rotationnel ne l'est pas. Par exemple :
dans une tornade, le vent tourne autour de l'œil du cyclone et le champ vectoriel vitesse du vent a un rotationnel non nul autour de l'œil. Le rotationnel de ce champ de vitesse (autrement dit le champ de vorticité ou encore champ tourbillon) est d'autant plus intense que l'on est proche de l'œil. La vitesse instantanée de rotation d'un élément de volume dans un tourbillon est la moitié du rotationnel en ce point ;
le rotationnel du champ des vitesses d'un solide qui tourne à la vitesse angulaire est dirigé selon l'axe de rotation et orienté de telle sorte que la rotation ait lieu, par rapport à lui, dans le sens direct et vaut simplement .
La notion de rotationnel de la vitesse est essentielle en mécanique des fluides. Elle décrit une rotation de la particule fluide. Si l'écoulement est irrotationnel (son rotationnel est nul en tout point), en termes mathématiques, le vecteur vitesse est alors le gradient du potentiel (on dit alors que les vitesses « dérivent d'un potentiel »). Si le fluide peut être considéré comme incompressible, la divergence de ce vecteur s'annule. Le laplacien du potentiel est donc nul : il s'agit d'un potentiel harmonique qui satisfait l'équation de Laplace.
Le rotationnel est un opérateur qui transforme un champ de vecteurs en un autre.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et de l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Explore les applications du Théorème de Green en 2D, soulignant l'importance des domaines réguliers pour une intégration réussie.
Présente la mécanique, le calcul différentiel et vectoriel, et les perspectives historiques d'Aristote à Newton.
Couvre le mouvement d'une meule sur un roulement antidérapant et la physique d'un disque mince en rotation.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
L'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
vignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
Nabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
We introduce a construction of subspaces of the spaces of tangential vector, n-vector, and tensor fields on surfaces. The resulting subspaces can be used as the basis of fast approximation algorithms for design and processing problems that involve tangenti ...
WILEY2020
,
In the class of Sobolev vector fields in R-n of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity cond ...
ELSEVIER2022
,
We define a conforming B-spline discretisation of the de Rham complex on multipatch geometries. We introduce and analyse the properties of interpolation operators onto these spaces which commute w.r.t. the surface differential operators. Using these result ...