In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well.
Probably the most common type of distributivity is the one defined for lattices, where the formation of binary suprema and infima provide the total operations of join () and meet (). Distributivity of these two operations is then expressed by requiring that the identity
hold for all elements x, y, and z. This distributivity law defines the class of distributive lattices. Note that this requirement can be rephrased by saying that binary meets preserve binary joins. The above statement is known to be equivalent to its order dual
such that one of these properties suffices to define distributivity for lattices. Typical examples of distributive lattice are totally ordered sets, Boolean algebras, and Heyting algebras. Every finite distributive lattice is isomorphic to a lattice of sets, ordered by inclusion (Birkhoff's representation theorem).
A semilattice is partially ordered set with only one of the two lattice operations, either a meet- or a join-semilattice. Given that there is only one binary operation, distributivity obviously cannot be defined in the standard way. Nevertheless, because of the interaction of the single operation with the given order, the following definition of distributivity remains possible. A meet-semilattice is distributive, if for all a, b, and x:
If a ∧ b ≤ x then there exist a and b such that a ≤ a, b ≤ b' and x = a ∧ b' .
Distributive join-semilattices are defined dually: a join-semilattice is distributive, if for all a, b, and x:
If x ≤ a ∨ b then there exist a and b such that a ≤ a, b ≤ b and x = a ∨ b' .
In either case, a' and b' need not be unique.
These definitions are justified by the fact that given any lattice L, the following statements are all equivalent:
L is distributive as a meet-semilattice
L is distributive as a join-semilattice
L is a distributive lattice.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the of three different ; the category CHey, the category Loc of locales, and its , the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
In the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice L is said to be completely distributive if, for any doubly indexed family {xj,k | j in J, k in Kj} of L, we have where F is the set of choice functions f choosing for each index j of J some index f(j) in Kj. Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices.
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
The goal of transductive learning is to find a way to recover the labels of lots of data with only a few known samples. In this work, we will work on graphs for two reasons. First, it’s possible to construct a graph from a given dataset with features. The ...
2011
,
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. A main tool for this study is the construction of a correspondence functor associated to any finite latt ...
2019
,
We investigate correspondence functors, namely the functors from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. They have various specific properties which do not hold for other types of functor ...