Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.
Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems (compare with numeral systems) in general (although one usually is also interested in the actual difference of two numbers, which is not given by the order). Other familiar examples of orderings are the alphabetical order of words in a dictionary and the genealogical property of lineal descent within a group of people.
The notion of order is very general, extending beyond contexts that have an immediate, intuitive feel of sequence or relative quantity. In other contexts orders may capture notions of containment or specialization. Abstractly, this type of order amounts to the subset relation, e.g., "Pediatricians are physicians," and "Circles are merely special-case ellipses."
Some orders, like "less-than" on the natural numbers and alphabetical order on words, have a special property: each element can be compared to any other element, i.e. it is smaller (earlier) than, larger (later) than, or identical to. However, many other orders do not. Consider for example the subset order on a collection of sets: though the set of birds and the set of dogs are both subsets of the set of animals, neither the birds nor the dogs constitutes a subset of the other.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre.
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
En mathématiques, le diagramme de Hasse, du nom du mathématicien allemand Helmut Hasse, est une représentation visuelle d'un ordre fini. Similaire à la représentation habituelle d’un graphe sur papier, il en facilite la compréhension. Dans un diagramme de Hasse : Les éléments ordonnés sont représentés par des points. La relation entre deux éléments est représentée par un segment entre deux points. Si un élément x est ≤ à un autre élément y, alors le point représentant x est placé plus bas que celui pour y.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
L'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. A main tool for this study is the construction of a correspondence functor associated to any finite latt ...
We investigate correspondence functors, namely the functors from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. They have various specific properties which do not hold for other types of functor ...