In quantum mechanics, Landau quantization refers to the quantization of the cyclotron orbits of charged particles in a uniform magnetic field. As a result, the charged particles can only occupy orbits with discrete, equidistant energy values, called Landau levels. These levels are degenerate, with the number of electrons per level directly proportional to the strength of the applied magnetic field. It is named after the Soviet physicist Lev Landau.
Landau quantization is directly responsible for the electronic susceptibility of metals, known as Landau diamagnetism. Under strong magnetic fields, Landau quantization leads to oscillations in electronic properties of materials as a function of the applied magnetic field known as the De Haas–Van Alphen and Shubnikov–de Haas effects.
Landau quantization is a key ingredient to explain the integer quantum Hall effect.
Consider a system of non-interacting particles with charge q and spin S confined to an area A = LxLy in the x-y plane. Apply a uniform magnetic field along the z-axis. In SI units, the Hamiltonian of this system (here, the effects of spin are neglected) is
Here, is the canonical momentum operator and is the operator for the electromagnetic vector potential (in position space ).
The vector potential is related to the magnetic field by
There is some gauge freedom in the choice of vector potential for a given magnetic field. The Hamiltonian is gauge invariant, which means that adding the gradient of a scalar field to A changes the overall phase of the wave function by an amount corresponding to the scalar field. But physical properties are not influenced by the specific choice of gauge.
From the possible solutions for A, a gauge fixing introduced by Lev Landau is often used for charged particles in a constant magnetic field.
When then is a possible solution in the Landau gauge.
In this gauge, the Hamiltonian is
The operator commutes with this Hamiltonian, since the operator ŷ is absent by the choice of gauge. Thus the operator can be replaced by its eigenvalue ħky.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values where VHall is the Hall voltage, Ichannel is the channel current, e is the elementary charge and h is Planck's constant. The divisor ν can take on either integer (ν = 1, 2, 3,...) or fractional (ν = 1/3, 2/5, 3/7, 2/3, 3/5, 1/5, 2/9, 3/13, 5/2, 12/5,.
Graphene (ˈgræfiːn) is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. Each atom in a graphene sheet is connected to its three nearest neighbors by σ-bonds and a delocalised π-bond, which contributes to a valence band that extends over the whole sheet.
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperature, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, and the Bose–Einstein condensate found in ultracold atomic systems.
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of modern condensed matter physics ranging from the quantum Hall effects to superconductivity.
Twisted Bilayer Graphene (TBG) is a change of paradigm in condensed matter: with flat topologic bands, it provides a platform for unconventional superconductivity, correlated insulation, Plankian meta
Two-dimensional systems with C2T (PT) symmetry exhibit the Euler class topology E is an element of Z in each two-band subspace realizing a fragile topology beyond the symmetry indicators. By systematically studying the energy levels of Euler insulating pha ...
In this Letter we address the reentrance of magic-angle phenomena (band flatness and quantum-geometric transport) in twisted bilayer graphene (TBG) subjected to strong magnetic fluxes +/-(1)0, +/- 200, +/- 3(p0 ... ((D0 = h/e is the flux quantum per moire ...
Topological semimetals are frequently discussed as materials platforms for future electronics that exploit the remarkable properties of their quasiparticles. These ideas are mostly based on dispersion relations that mimic relativistic particles, such as We ...