Résumé
vignette|Niveaux de Landau. En mécanique quantique, la quantification de Landau désigne la quantification des orbites cyclotroniques de particules chargées dans un champ magnétique. En conséquence, les particules chargées peuvent seulement occuper des orbitales d'énergie discrète (ou quantique), appelées « niveaux de Landau ». Dans ces niveaux, le nombre d'électrons admis est directement proportionnel au module du champ magnétique. La quantification de Landau influence directement les oscillations quantiques des propriétés électroniques des matériaux. Elle tire son nom du physicien soviétique Lev Landau qui l'a découverte. Considérons un gaz d'électrons bidimensionnel (GE2D) composé de particules chargées qui n'intéragissent pas. Soient et la charge des particules et la surface du GE2D que nous soumettons à un fort champ magnétique externe . L'Hamiltonien du système s'écrit: avec l'opérateur de quantité de mouvement de la particule et son moment généralisé obtenu avec la substitution de Peierls. Le vecteur tel que est le potentiel vecteur qu'on peut choisir dans la jauge souhaitée puisque l'Hamiltonien est invariant de jauge. L'invariance de jauge implique qu'un changement de jauge ne modifie que la phase de la fonction d'onde. Cette modification ne change pas les propriétés physiques, donc la jauge de Landau sera choisie par simplicité. Elle est définie par: avec et la composante de la position. L'Hamiltonien ne couplant pas les électrons, on peut le réduire à un Hamiltonien à un corps. où l'indice sera implicite dans les développements suivants. Pour résoudre ce problème aux valeurs propres, on commence par réécrire l'Hamiltonien pour mettre en évidence une similarité avec l'oscillateur harmonique. où on a utilisé le fait que . Nous pouvons alors faire intervenir des opérateurs d'échelle définis par Ces opérateurs sont bosoniques, autrement dit et les vecteurs d'états sur lesquels ils agissent forment une base orthonormée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.