A skyhook is a proposed momentum exchange tether that aims to reduce the cost of placing payloads into low Earth orbit. A heavy orbiting station is connected to a cable which extends down towards the upper atmosphere. Payloads, which are much lighter than the station, are hooked to the end of the cable as it passes, and are then flung into orbit by rotation of the cable around the center of mass. The station can then be reboosted to its original altitude by electromagnetic propulsion, rocket propulsion, or by deorbiting another object with the same kinetic energy as transferred to the payload.
A skyhook differs from a geostationary orbit space elevator in that a skyhook would be much shorter and would not come in contact with the surface of the Earth. A skyhook would require a suborbital launch vehicle to reach its lower end, while a space elevator would not.
Different synchronous non-rotating orbiting skyhook concepts and versions have been proposed, starting with Isaacs in 1966, Artsutanov in 1967, Pearson and Colombo in 1975, Kalaghan in 1978, and Braginski in 1985. The versions with the best potential involve a much shorter tether in low Earth orbit, which rotates in its orbital plane and whose ends brush the upper Earth atmosphere, with the rotational motion cancelling the orbital motion at ground level. These "rotating" skyhook versions were proposed by Moravec in 1976, and Sarmont in 1994.
This resulted in a Shuttle-based tether system: the TSS-1R mission, launched 22 February 1996 on STS-75 that focused in characterizing basic space tether behavior and space plasma physics. The Italian satellite was deployed to a distance of from the Space Shuttle.
An engineer speculated in 1994 that the skyhook could be cost competitive with what is realistically thought to be achievable using a space elevator.
In 2000 and 2001, Boeing Phantom Works, with a grant from NASA Institute for Advanced Concepts, performed a detailed study of the engineering and commercial feasibility of various skyhook designs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines. Tether satellites might be used for various purposes, including research into tether propulsion, tidal stabilization and orbital plasma dynamics.
Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.
An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth, the required speed is on the order of 10 km/sec, compared to a typical low Earth orbit velocity of 8 km/sec. The structure is intended to be used as a space station or as a planetary vehicle for very high-speed transportation or space launch.
Thin-laminate composites with thicknesses below 200 mu m hold significant promise for future, larger, and lighter deployable structures. This paper presents a study of the time-dependent failure behavior of thin carbon-fiber laminates under bending, focusi ...
This project aims at proposing a payload concept for the “European Large Logistic Lander (EL3) polar explorer ”, the first European Spatial Agency (ESA) technology demonstration mission of the EL3 mission. This mission, planned to be launched in 2028, aims ...
A Pd-catalyzed method based on the use of a molecular tether is described for olefin difunctionalization. Enabled by an easily introduced trifluoroacetaldehyde-derived tether, a simultaneous introduction of oxygen and nitrogen heteroatoms across unsaturate ...