Dark-field microscopy (also called dark-ground microscopy) describes microscopy methods, in both light and electron microscopy, which exclude the unscattered beam from the image. As a result, the field around the specimen (i.e., where there is no specimen to scatter the beam) is generally dark.
In optical microscopes a darkfield condenser lens must be used, which directs a cone of light away from the objective lens. To maximize the scattered light-gathering power of the objective lens, oil immersion is used and the numerical aperture (NA) of the objective lens must be less than 1.0. Objective lenses with a higher NA can be used but only if they have an adjustable diaphragm, which reduces the NA. Often these objective lenses have a NA that is variable from 0.7 to 1.25.
In optical microscopy, dark-field describes an illumination technique used to enhance the contrast in unstained samples. It works by illuminating the sample with light that will not be collected by the objective lens and thus will not form part of the image. This produces the classic appearance of a dark, almost black, background with bright objects on it.
The steps are illustrated in the figure where an inverted microscope is used.
Light enters the microscope for illumination of the sample.
A specially sized disc, the patch stop (see figure), blocks some light from the light source, leaving an outer ring of illumination. A wide phase annulus can also be reasonably substituted at low magnification.
The condenser lens focuses the light towards the sample.
The light enters the sample. Most is directly transmitted, while some is scattered from the sample.
The scattered light enters the objective lens, while the directly transmitted light simply misses the lens and is not collected due to a direct-illumination block (see figure).
Only the scattered light goes on to produce the image, while the directly transmitted light is omitted.
Dark-field microscopy is a very simple yet effective technique and well suited for uses involving live and unstained biological samples, such as a smear from a tissue culture or individual, water-borne, single-celled organisms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope. There are many types of microscopes, and they may be grouped in different ways.
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
This course will describe methods underlying translational approaches from disease modeling and characterization to therapeutic applications. The presented techniques will be complemented by hands-on
Introduction to the different contrast enhancing methods in optical microscopy. Basic hands-on experience with optical microscopes at EPFL's BioImaging and Optics Facility. How to investigate biologic
In this thesis, we study the 3 challenges described above. First, we study different reconstruction techniques and assess the fidelity of each reconstruction results by means of structured illumination and phase conjugation. By reconstructing the 3D refrac ...
Optical microscopy is an essential tool for biologists, who are often faced with the need to overcome the spatial and temporal resolution limitations of their devices to capture finer details. As upgrading imaging hardware is expensive, computational metho ...
After decades of technological advancements, high-speed atomic force microscopy (HS-AFM) has emerged as a powerful technique for visualizing dynamic processes. At the nanoscale, the AFM provides valuable insights into the sample by sensing minute interacti ...