In supergravity theories combining general relativity and supersymmetry, the gravitino (_Gravitino) is the gauge fermion supersymmetric partner of the hypothesized graviton. It has been suggested as a candidate for dark matter. If it exists, it is a fermion of spin 3/2 and therefore obeys the Rarita–Schwinger equation. The gravitino field is conventionally written as ψμα with μ = 0, 1, 2, 3 a four-vector index and α = 1, 2 a spinor index. For μ = 0 one would get negative norm modes, as with every massless particle of spin 1 or higher. These modes are unphysical, and for consistency there must be a gauge symmetry which cancels these modes: δψμα = ∂μεα, where εα(x) is a spinor function of spacetime. This gauge symmetry is a local supersymmetry transformation, and the resulting theory is supergravity. Thus the gravitino is the fermion mediating supergravity interactions, just as the photon is mediating electromagnetism, and the graviton is presumably mediating gravitation. Whenever supersymmetry is broken in supergravity theories, it acquires a mass which is determined by the scale at which supersymmetry is broken. This varies greatly between different models of supersymmetry breaking, but if supersymmetry is to solve the hierarchy problem of the Standard Model, the gravitino cannot be more massive than about 1 TeV/c2. Murray Gell-Mann and Peter van Nieuwenhuizen intended the spin-3/2 particle associated with supergravity to be called the 'hemitrion', meaning 'half-3', however the editors of Physical Review were not keen on the name and instead suggested 'massless Rarita–Schwinger particle' for their 1977 publication. The current name of gravitino was instead suggested by Sidney Coleman and Heinz Pagels, although this term was originally coined in 1954 by Felix Pirani to describe a class of negative energy excitations with zero rest mass. If the gravitino indeed has a mass of the order of TeV, then it creates a problem in the standard model of cosmology, at least naïvely. One option is that the gravitino is stable.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Dark Matter Candidates
Explores dark matter candidates like sterile neutrinos, axions, and WIMPs, discussing their properties and implications on the Universe.
Show more
Related publications (49)

New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies

Alexey Boyarsky, Diego Blas Temino, Kyrylo Bondarenko

Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise, and improve upon previous phase-space considerations to obtain lower b ...
OXFORD UNIV PRESS2021

Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at $\sqrt{s} =$ 13 TeV

Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Mingkui Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Thomas Berger, Alessandro Caratelli, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Sourav Sen, Viktor Khristenko, Marco Trovato, Fan Xia, Xiao Wang, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Lei Feng, Muhammad Waqas, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Pratyush Das, Miao Hu, Lei Li, Amr Mohamed, Valérie Scheurer

A search for long-lived particles decaying to displaced, nonprompt jets and missing transverse momentum is presented. The data sample corresponds to an integrated luminosity of 137 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV colle ...
2019

Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

Show more
Related concepts (5)
Gaugino
In supersymmetry theories of particle physics, a gaugino is the hypothetical fermionic supersymmetric field quantum (superpartner) of a gauge field, as predicted by gauge theory combined with supersymmetry. All gauginos have spin 1/2, except for gravitino (spin 3/2). In the minimal supersymmetric extension of the standard model the following gauginos exist: The gluino (symbol _gluino) is the superpartner of the gluon, and hence carries color charge. The gravitino (symbol _gravitino) is the supersymmetric partner of the graviton.
Minimal Supersymmetric Standard Model
The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory.
Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.