Concept

Spin-weighted spherical harmonics

Summary
In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weight s that reflects the additional U(1) symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics Ylm, and are typically denoted by sYlm, where l and m are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the U(1) gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical harmonics by application of spin raising and lowering operators. In particular, the spin-weighted spherical harmonics of spin weight s = 0 are simply the standard spherical harmonics: Spaces of spin-weighted spherical harmonics were first identified in connection with the representation theory of the Lorentz group . They were subsequently and independently rediscovered by and applied to describe gravitational radiation, and again by as so-called "monopole harmonics" in the study of Dirac monopoles. Regard the sphere S2 as embedded into the three-dimensional Euclidean space R3. At a point x on the sphere, a positively oriented orthonormal basis of tangent vectors at x is a pair a, b of vectors such that where the first pair of equations states that a and b are tangent at x, the second pair states that a and b are unit vectors, the penultimate equation that a and b are orthogonal, and the final equation that (x, a, b) is a right-handed basis of R3.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (34)