Summary
In graph theory, a flow network (also known as a transportation network) is a directed graph where each edge has a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. Often in operations research, a directed graph is called a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or sink, which has only incoming flow. A network can be used to model traffic in a computer network, circulation with demands, fluids in pipes, currents in an electrical circuit, or anything similar in which something travels through a network of nodes. A network is a directed graph G = (V, E) with a non-negative capacity function c for each edge, and without multiple arcs (i.e. edges with the same source and target nodes). Without loss of generality, we may assume that if (u, v) ∈ E, then (v, u) is also a member of E. Additionally, if (v, u) ∉ E then we may add (v, u) to E and then set the c(v, u) = 0. If two nodes in G are distinguished – one as the source s and the other as the sink t – then (G, c, s, t) is called a flow network. Flow functions model the net flow of units between pairs of nodes, and are useful when asking questions such as what is the maximum number of units that can be transferred from the source node s to the sink node t? The amount of flow between two nodes is used to represent the net amount of units being transferred from one node to the other. The excess function xf : V → represents the net flow entering a given node u (i.e. the sum of the flows entering u) and is defined byA node u is said to be active if xf (u) > 0 (i.e. the node u consumes flow), deficient if xf (u) < 0 (i.e. the node u produces flow), or conserving if xf (u) = 0. In flow networks, the source s is deficient, and the sink t is active. Pseudo-flows, feasible flows, and pre-flows are all examples of flow functions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
MATH-360: Graph theory
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
Show more
Related lectures (55)
Bounded Network Flow: Solvable Minult-Maxcret Problem
Covers solving bounded network flow problems by adjusting flow capacities and constraints, including binary programs.
Ford-Fulkerson Method
Introduces the Ford-Fulkerson Method to find the maximum flow in a network.
Network Flows and LP Formulations
Explains network flows, LP formulations, simplex method, duality, and practical applications.
Show more
Related publications (156)
Related concepts (8)
Directed graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
Max-flow min-cut theorem
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink. This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.
Network theory
In mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience.
Show more