Summary
Islet transplantation is the transplantation of isolated islets from a donor pancreas into another person. It is a treatment for type 1 diabetes. Once transplanted, the islets begin to produce insulin, actively regulating the level of glucose in the blood. Islets are usually infused into the person's liver. If the cells are not from a genetically identical donor the person's body will recognize them as foreign and the immune system will begin to attack them as with any transplant rejection. To prevent this immunosuppressant drugs are used. A study from 2005 showed that islet transplantation has progressed to the point that 58% of the people were insulin independent one year after the operation. A review published 2016 reported a 50 – 70% rate of insulin independence after five years, in five studies from leading transplant centers published 2005 – 2012. In the period from 1999 to 2004, 471 people with type 1 diabetes received islet transplants at 43 institutions worldwide. Donislecel (Lantidra) allogeneic (donor) pancreatic islet cellular therapy was approved for medical use in the United States in June 2023. The concept of islet transplantation is not new. Investigators as early as the English surgeon Charles Pybus (1882–1975) attempted to graft pancreatic tissue to cure diabetes. Most, however, credit the recent era of islet transplantation research to Paul Lacy's studies dating back more than three decades. In 1967, Lacy's group described a novel collagenase-based method (later modified by Dr. Camillo Ricordi, then working with Dr. Lacy) to isolate islets, paving the way for future in vitro and in vivo islet experiments. Subsequent studies showed that transplanted islets could reverse diabetes in both rodents and non-human primates. In a summary of the 1977 Workshop on Pancreatic Islet Cell Transplantation in Diabetes, Lacy commented on the feasibility of "islet cell transplantation as a therapeutic approach [for] the possible prevention of the complications of diabetes in man".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (45)
Related units (1)
Related concepts (4)
Liver
The liver is a major metabolic organ only found in vertebrate animals, which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it is located in the right upper quadrant of the abdomen, below the diaphragm and mostly shielded by the lower right rib cage. Its other metabolic roles include carbohydrate metabolism, the production of hormones, conversion and storage of nutrients such as glucose and glycogen, and the decomposition of red blood cells.
Kidney transplantation
Kidney transplant or renal transplant is the organ transplant of a kidney into a patient with end-stage kidney disease (ESRD). Kidney transplant is typically classified as deceased-donor (formerly known as cadaveric) or living-donor transplantation depending on the source of the donor organ. Living-donor kidney transplants are further characterized as genetically related (living-related) or non-related (living-unrelated) transplants, depending on whether a biological relationship exists between the donor and recipient.
Pancreatic islets
The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans. The pancreatic islets constitute 1–2% of the pancreas volume and receive 10–15% of its blood flow. The pancreatic islets are arranged in density routes throughout the human pancreas, and are important in the metabolism of glucose. There are about 1 million islets distributed throughout the pancreas of a healthy adult human, each of which measures an average of about 0.
Show more