Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, and muscle wire. The "memorized geometry" can be modified by fixating the desired geometry and subjecting it to a thermal treatment, for example a wire can be taught to memorize the shape of a coil spring. Parts made of shape-memory alloys can be lightweight, solid-state alternatives to conventional actuators such as hydraulic, pneumatic, and motor-based systems. They can also be used to make hermetic joints in metal tubing, and it can also replace a sensor-actuator closed loop to control water temperature by governing hot and cold water flow ratio. The two most prevalent shape-memory alloys are copper-aluminium-nickel and nickel-titanium (NiTi), but SMAs can also be created by alloying zinc, copper, gold and iron. Although iron-based and copper-based SMAs, such as Fe-Mn-Si, Cu-Zn-Al and Cu-Al-Ni, are commercially available and cheaper than NiTi, NiTi-based SMAs are preferable for most applications due to their stability and practicability as well as their superior thermo-mechanical performance. SMAs can exist in two different phases, with three different crystal structures (i.e. twinned martensite, detwinned martensite, and austenite) and six possible transformations. The thermo-mechanic behavior of the SMAs is governed by a phase transformation between the austenite and the martensite. NiTi alloys change from austenite to martensite upon cooling starting from a temperature below Ms; Mf is the temperature at which the transition to martensite completes upon cooling. Accordingly, during heating As and Af are the temperatures at which the transformation from martensite to austenite starts and finishes. Applying a mechanical load to the martensite leads to re-orientation of the crystals or “de-twinning” which results to a deformation which is not recovered (remembered) after releasing the mechanical load.
Yves Perriard, Thomas Guillaume Martinez, Marjan Ghorbani, Sean Thomas, Guilain Lionel Germain Lang
Christian Leinenbach, Rafal Wróbel
Simon Nessim Henein, Florent Cosandier, Loïc Benoît Tissot-Daguette, Etienne Frédéric Gabriel Thalmann