Concept

Unlink

Summary
In the mathematical field of knot theory, an unlink is a link that is equivalent (under ambient isotopy) to finitely many disjoint circles in the plane. An n-component link L ⊂ S3 is an unlink if and only if there exists n disjointly embedded discs Di ⊂ S3 such that L = ∪i∂Di. A link with one component is an unlink if and only if it is the unknot. The link group of an n-component unlink is the free group on n generators, and is used in classifying Brunnian links. The Hopf link is a simple example of a link with two components that is not an unlink. The Borromean rings form a link with three components that is not an unlink; however, any two of the rings considered on their own do form a two-component unlink. Taizo Kanenobu has shown that for all n > 1 there exists a hyperbolic link of n components such that any proper sublink is an unlink (a Brunnian link). The Whitehead link and Borromean rings are such examples for n = 2, 3.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.