In the mathematical field of knot theory, an unlink is a link that is equivalent (under ambient isotopy) to finitely many disjoint circles in the plane.
An n-component link L ⊂ S3 is an unlink if and only if there exists n disjointly embedded discs Di ⊂ S3 such that L = ∪i∂Di.
A link with one component is an unlink if and only if it is the unknot.
The link group of an n-component unlink is the free group on n generators, and is used in classifying Brunnian links.
The Hopf link is a simple example of a link with two components that is not an unlink.
The Borromean rings form a link with three components that is not an unlink; however, any two of the rings considered on their own do form a two-component unlink.
Taizo Kanenobu has shown that for all n > 1 there exists a hyperbolic link of n components such that any proper sublink is an unlink (a Brunnian link). The Whitehead link and Borromean rings are such examples for n = 2, 3.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the design and synthesis of interlocked molecules like catenanes and rotaxanes, along with the structural and symbolic significance of knots and Borromean rings.
In mathematical knot theory, a link is a collection of knots which do not intersect, but which may be linked (or knotted) together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called knot theory. Implicit in this definition is that there is a trivial reference link, usually called the unlink, but the word is also sometimes used in context where there is no notion of a trivial link.
In knot theory, an area of mathematics, the link group of a link is an analog of the knot group of a knot. They were described by John Milnor in his Ph.D. thesis, . Notably, the link group is not in general the fundamental group of the link complement. The link group of an n-component link is essentially the set of (n + 1)-component links extending this link, up to link homotopy. In other words, each component of the extended link is allowed to move through regular homotopy (homotopy through immersions), knotting or unknotting itself, but is not allowed to move through other components.
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves (this is not true for curves in most 3-manifolds, where linking numbers can also be fractions or just not exist at all).