In the mathematical field of knot theory, an unlink is a link that is equivalent (under ambient isotopy) to finitely many disjoint circles in the plane.
An n-component link L ⊂ S3 is an unlink if and only if there exists n disjointly embedded discs Di ⊂ S3 such that L = ∪i∂Di.
A link with one component is an unlink if and only if it is the unknot.
The link group of an n-component unlink is the free group on n generators, and is used in classifying Brunnian links.
The Hopf link is a simple example of a link with two components that is not an unlink.
The Borromean rings form a link with three components that is not an unlink; however, any two of the rings considered on their own do form a two-component unlink.
Taizo Kanenobu has shown that for all n > 1 there exists a hyperbolic link of n components such that any proper sublink is an unlink (a Brunnian link). The Whitehead link and Borromean rings are such examples for n = 2, 3.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore la conception et la synthèse de molécules imbriquées comme les caténanes et les rotaxanes, ainsi que la signification structurelle et symbolique des nœuds et des anneaux borroméens.
En théorie des nœuds, un entrelacs est un enchevêtrement de plusieurs nœuds. L'étude des entrelacs et des nœuds est liée, plusieurs invariants s'interprétant plus naturellement dans le cadre général des entrelacs, au moyen notamment des relations d'écheveau. Un entrelacs est la donnée d'un plongement injectif d'une ou plusieurs copies du cercle S dans R ou dans S, appelées ses composantes, ou ses boucles. Deux entrelacs sont considérés équivalents lorsqu'ils sont identiques à isotopie près.
In knot theory, an area of mathematics, the link group of a link is an analog of the knot group of a knot. They were described by John Milnor in his Ph.D. thesis, . Notably, the link group is not in general the fundamental group of the link complement. The link group of an n-component link is essentially the set of (n + 1)-component links extending this link, up to link homotopy. In other words, each component of the extended link is allowed to move through regular homotopy (homotopy through immersions), knotting or unknotting itself, but is not allowed to move through other components.
En mathématiques, l'enlacement est un nombre entier défini pour deux courbes fermées de l'espace R sans point double. Il décrit la façon dont ces deux courbes sont enlacées, liées l'une par rapport à l'autre. Il fut défini pour la première fois par Gauss. Si on peut séparer les deux courbes en les déformant sans les couper, alors l'enlacement des deux courbes vaut zéro. La réciproque est fausse. Il existe plusieurs façons de calculer l'enlacement de deux courbes et .