Concept

Faulhaber's formula

In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a polynomial in n. In modern notation, Faulhaber's formula is Here, is the binomial coefficient "p + 1 choose k", and the Bj are the Bernoulli numbers with the convention that . Faulhaber's formula concerns expressing the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n. The first few examples are well known. For p = 0, we have For p = 1, we have the triangular numbers For p = 2, we have the square pyramidal numbers The coefficients of Faulhaber's formula in its general form involve the Bernoulli numbers Bj. The Bernoulli numbers begin where here we use the convention that . The Bernoulli numbers have various definitions (see Bernoulli_number#Definitions), such as that they are the coefficients of the exponential generating function Then Faulhaber's formula is that Here, the Bj are the Bernoulli numbers as above, and is the binomial coefficient "p + 1 choose k". So, for example, one has for p = 4, The first seven examples of Faulhaber's formula are Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. In 1713, Jacob Bernoulli published under the title Summae Potestatum an expression of the sum of the p powers of the n first integers as a (p + 1)th-degree polynomial function of n, with coefficients involving numbers Bj, now called Bernoulli numbers: Introducing also the first two Bernoulli numbers (which Bernoulli did not), the previous formula becomes using the Bernoulli number of the second kind for which , or using the Bernoulli number of the first kind for which Faulhaber himself did not know the formula in this form, but only computed the first seventeen polynomials; the general form was established with the discovery of the Bernoulli numbers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (4)
Markov Chains: Transience & Recurrence
Explores the notions of transience and recurrence in Markov chains through various examples and calculations.
Counting: Binomial Theorem and Pascal's Identity
Covers the Binomial Theorem, Pascal's Identity, and Pascal's Triangle in counting.
The Binomial Theorem
Covers the binomial theorem, Pascal's identity, and triangle with examples and applications.
Show more
Related publications (5)
Related concepts (7)
Squared triangular number
In number theory, the sum of the first n cubes is the square of the nth triangular number. That is, The same equation may be written more compactly using the mathematical notation for summation: This identity is sometimes called Nicomachus's theorem, after Nicomachus of Gerasa (c. 60 – c. 120 CE). Nicomachus, at the end of Chapter 20 of his Introduction to Arithmetic, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on.
Bernoulli polynomials
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula. These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree.
Summation
In mathematics, summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined. Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.