Publication

Analytic twists of modular forms and applications

Abstract

We are interested in the study of non-correlation of Fourier coefficients of Maass forms against a wide class of real analytic functions. In particular, the class of functions we are interested in should be thought of as some archimedean analogs of Frobenius trace functions. In the first part of the thesis, we give an axiomatic definition for this class, and prove that these functions satisfy properties similar to that of Frobenius trace functions. In particular, we prove non-correlation statements analogous to those given by Fouvry, Kowalski and Michel for algebraic trace functions. In the second part of the thesis, we establish the existence of large values of Hecke-Maass L-functions with prescribed argument. In studying these problems, one encounters sums of Fourier coefficients of Maass forms against real oscillatory functions. In some cases, one can prove that these functions satisfy the axioms discussed previously.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.