Concept

Formule de Faulhaber

Résumé
En mathématiques, la formule de Faulhaber, portant le nom du mathématicien allemand Johann Faulhaber, exprime la somme des puissances p-ième des n premiers entiers : par une fonction polynomiale de degré p + 1 en n, les coefficients impliquant les nombres de Bernoulli : .Les coefficients qui apparaissent sont les coefficients binomiaux (aussi notés ). Dans la convention la plus usuelle, les nombres de Bernoulli sont mais ici, une convention moins courante est adoptée, à savoir que le nombre est changé en . La formule de Faulhaber s'écrit (avec et ) : (avec au lieu de ).Faulhaber ne connaissait pas la formule sous cette forme, qui a été découverte par Jacques Bernoulli, et qui est un cas particulier de la formule d’Euler-MacLaurin. Mais il a obtenu l'expression dans les 17 premiers cas, et le fait que lorsque l'exposant est impair, la somme s'exprime en fonction de la somme des premiers entiers. Dans ses calculs, il a manipulé la factorielle n! jusqu'à 24!, ce qui illustre son remarquable talent de calculateur, qu'il partage avec son correspondant Ludolph van Ceulen. Il est remarquable surtout par son anticipation des à une époque où l'analyse balbutie. Il utilise la k-symétrie, et donne aussi certaines généralisations remarquables. (Théorème de Nicomaque) On peut voir la formule énoncée avec des termes allant de 0 à n – 1 plutôt que de 1 à n. Dans ce cas, la seule chose qui change est que l'on prend B1 = −1/2 au lieu de +1/2, donc le terme de deuxième plus haut degré dans chaque cas possède un signe moins au lieu d'un signe plus . (avec ). La formule est valide pour tous entiers naturels p et n (y compris pour p = 0 , avec 0 = 1) : On peut écrire (pour p et n entiers naturels) :,où est le polynôme de Bernoulli de rang p. On a , nombre de Bernoulli de rang p (avec ).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.