En mathématiques, la formule de Faulhaber, portant le nom du mathématicien allemand Johann Faulhaber, exprime la somme des puissances p-ième des n premiers entiers : par une fonction polynomiale de degré p + 1 en n, les coefficients impliquant les nombres de Bernoulli : .Les coefficients qui apparaissent sont les coefficients binomiaux (aussi notés ).
Dans la convention la plus usuelle, les nombres de Bernoulli sont
mais ici, une convention moins courante est adoptée, à savoir que le nombre est changé en .
La formule de Faulhaber s'écrit (avec et ) : (avec au lieu de ).Faulhaber ne connaissait pas la formule sous cette forme, qui a été découverte par Jacques Bernoulli, et qui est un cas particulier de la formule d’Euler-MacLaurin. Mais il a obtenu l'expression dans les 17 premiers cas, et le fait que lorsque l'exposant est impair, la somme s'exprime en fonction de la somme des premiers entiers. Dans ses calculs, il a manipulé la factorielle n! jusqu'à 24!, ce qui illustre son remarquable talent de calculateur, qu'il partage avec son correspondant Ludolph van Ceulen. Il est remarquable surtout par son anticipation des à une époque où l'analyse balbutie. Il utilise la k-symétrie, et donne aussi certaines généralisations remarquables.
(Théorème de Nicomaque)
On peut voir la formule énoncée avec des termes allant de 0 à n – 1 plutôt que de 1 à n. Dans ce cas, la seule chose qui change est que l'on prend B1 = −1/2 au lieu de +1/2, donc le terme de deuxième plus haut degré dans chaque cas possède un signe moins au lieu d'un signe plus .
(avec ).
La formule est valide pour tous entiers naturels p et n (y compris pour p = 0 , avec 0 = 1) :
On peut écrire (pour p et n entiers naturels) :,où est le polynôme de Bernoulli de rang p.
On a , nombre de Bernoulli de rang p (avec ).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|droite|upright=1.6|Visualisation graphique de l'égalité. La somme des n premiers cubes est le carré de la somme des n premiers entiers : Soit, en utilisant la notation plus compacte des sommes et en rappelant la somme d'une série arithmétique : Cette identité est parfois appelée théorème de Nicomaque. C'est un cas particulier de la formule de Faulhaber. De nombreux mathématiciens historiques ont étudié et démontré cette égalité facile à prouver. Stroeker estime que .
En mathématiques, les polynômes de Bernoulli apparaissent dans l'étude de beaucoup de fonctions spéciales et en particulier, la fonction zêta de Riemann ; des polynômes analogues, correspondant à une fonction génératrice voisine, sont connus sous le nom de polynômes d'Euler. Les polynômes de Bernoulli sont l'unique suite de polynômes telle que : La fonction génératrice pour les polynômes de Bernoulli est La fonction génératrice pour les polynômes d'Euler est Les nombres de Bernoulli sont donnés par .
En mathématiques, la somme de deux nombres est le résultat de leur addition. Les éléments additionnés s’appellent les termes de la somme. Elle se calcule de différentes manières selon le système de numération employé. Du fait de la commutativité et de l'associativité de l'addition, la somme d'un ensemble fini de nombres est bien définie indépendamment de l'ordre dans lequel est faite l'addition, mais il n'existe pas toujours de formule réduite pour l'exprimer.
We are interested in the study of non-correlation of Fourier coefficients of Maass forms against a wide class of real analytic functions. In particular, the class of functions we are interested in should be thought of as some archimedean analogs of Frobeni ...
EPFL2017
, ,
This work presents and studies a distributed algorithm for solving optimization problems over networks where agents have individual costs to minimize subject to subspace constraints that require the minimizers across the network to lie in a low-dimensional ...
We prove a conjecture of Lecouvey, which proposes a closed, positive combinatorial formula for symplectic Kostka-Foulkes polynomials, in the case of rows of arbitrary weight. To show this, we construct a new algorithm for computing cocyclage in terms of wh ...