The Virgo interferometer is a large Michelson interferometer designed to detect gravitational waves predicted by the general theory of relativity. It is located in Santo Stefano a Macerata, near the city of Pisa, Italy. The instrument's two arms are three kilometres long, hosting its mirrors and instrumentation inside an ultra-high vacuum.
Virgo is hosted by the European Gravitational Observatory (EGO), a consortium founded by the French CNRS and Italian INFN. The Virgo Collaboration operates the detector and defines the strategy and policy for its use and upgrades. It is composed of around 850 members, representing 142 institutions in 16 different countries. Other interferometers similar to Virgo have the same goal of detecting gravitational waves, including the two LIGO interferometers in the United States (at the Hanford Site and in Livingston, Louisiana) and the Japanese interferometer KAGRA. Since 2007, Virgo and LIGO have agreed to share and jointly analyze the data recorded by their detectors and to jointly publish their results; this agreement now includes KAGRA since 2019. Because the interferometric detectors are not directional (they survey the whole sky) and are looking for signals which are weak and infrequent, simultaneous detection of a gravitational wave in multiple instruments is necessary to confirm the signal validity and to deduce the location of its source.
The interferometer is named after the Virgo Cluster, a cluster of about 1,500 galaxies in the Virgo constellation, about 50 million light-years from Earth. Built as part of a franco-italian effort to detect the gravitational waves predicted by general relativity, it now plays a significant part in the global gravitational wave detector network, as gravitational wave astronomy takes its first steps. It has participated in a number of detections, and periodically undergoes improvements to enhance its sensitivity and increase its performance.
The Virgo experiment is managed by the European Gravitational Observatory (EGO) consortium, created in December 2000 by the CNRS and INFN.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
Introduction and application of photon based tools for chemical sciences: from basic concepts to optical and x-ray lasers
An exotic star is a hypothetical compact star composed of exotic matter (something not made of electrons, protons, neutrons, or muons), and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Types of exotic stars include quark stars (composed of quarks) strange stars (composed of strange quark matter, a condensate of up, down, and strange quarks) s (speculative material composed of preons, which are hypothetical particles and "building blocks" of quarks, should quarks be decomposable into component sub-particles).
A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a hypernova explosion or as a gamma ray burst. These black holes are also referred to as collapsars. By the no-hair theorem, a black hole can only have three fundamental properties: mass, electric charge, and angular momentum. The angular momentum of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it.
The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera.
Magnonics is an exciting and rapidly growing field revolving around the study and manipulation of magnons, the low-lying collective excitations of magnetically ordered systems. This field has emerged in response to both fundamental physics interests and th ...
2023
, , ,
In strained mechanical resonators, the concurrence of tensile stress and geometric nonlinearity dramatically reduces dissipation. This phenomenon, called dissipation dilution, is employed in mirror suspensions of gravitational-wave interferometers and at t ...
Estimation of the dynamic evolution of the electron plasma density during a tokamak discharge is crucial since it directly affects the plasma performance, confinement and stability. Therefore it needs to be monitored and controlled. Knowledge of the densit ...