Summary
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties: A is a topologically closed set in the norm topology of operators. A is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra of complex-valued continuous functions on X that vanish at infinity, where X is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establish a general framework for these algebras, which culminated in a series of papers on rings of operators. These papers considered a special class of C*-algebras which are now known as von Neumann algebras. Around 1943, the work of Israel Gelfand and Mark Naimark yielded an abstract characterisation of C*-algebras making no reference to operators on a Hilbert space. C*-algebras are now an important tool in the theory of unitary representations of locally compact groups, and are also used in algebraic formulations of quantum mechanics. Another active area of research is the program to obtain classification, or to determine the extent of which classification is possible, for separable simple nuclear C*-algebras. We begin with the abstract characterization of C*-algebras given in the 1943 paper by Gelfand and Naimark. A C*-algebra, A, is a Banach algebra over the field of complex numbers, together with a map for with the following properties: It is an involution, for every x in A: For all x, y in A: For every complex number and every : For all x in A: Remark.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.