Summary
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy This ensures that the multiplication operation is continuous. A Banach algebra is called unital if it has an identity element for the multiplication whose norm is and commutative if its multiplication is commutative. Any Banach algebra (whether it has an identity element or not) can be embedded isometrically into a unital Banach algebra so as to form a closed ideal of . Often one assumes a priori that the algebra under consideration is unital: for one can develop much of the theory by considering and then applying the outcome in the original algebra. However, this is not the case all the time. For example, one cannot define all the trigonometric functions in a Banach algebra without identity. The theory of real Banach algebras can be very different from the theory of complex Banach algebras. For example, the spectrum of an element of a nontrivial complex Banach algebra can never be empty, whereas in a real Banach algebra it could be empty for some elements. Banach algebras can also be defined over fields of -adic numbers. This is part of -adic analysis. The prototypical example of a Banach algebra is , the space of (complex-valued) continuous functions on a locally compact (Hausdorff) space that vanish at infinity. is unital if and only if is compact. The complex conjugation being an involution, is in fact a C*-algebra. More generally, every C*-algebra is a Banach algebra by definition. The set of real (or complex) numbers is a Banach algebra with norm given by the absolute value. The set of all real or complex -by- matrices becomes a unital Banach algebra if we equip it with a sub-multiplicative matrix norm.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Categorical Foundations for K-theory

Nicolas Michel

K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other f
EPFL2010
Related people (1)
Related concepts (57)
C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties: A is a topologically closed set in the norm topology of operators. A is closed under the operation of taking adjoints of operators.
Banach algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy This ensures that the multiplication operation is continuous. A Banach algebra is called unital if it has an identity element for the multiplication whose norm is and commutative if its multiplication is commutative.
Vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.
Show more
Related courses (13)
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
MATH-502: Distribution and interpolation spaces
The aim of this course is to provide a solid foundation of theory of distributions, Sobolev spaces and an introduction to the more general theory of interpolation spaces.
MATH-302: Functional analysis I
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
Show more
Related lectures (79)
Weak Solutions of Differential Equations
Explores weak solutions of differential equations and their properties.
Interpolation Spaces
Explores interpolation spaces in Banach spaces, emphasizing real continuous interpolation spaces and the K-method.
Cauchy Test and Generators
Explores Cauchy test, generators, and density in functional analysis.
Show more