A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.
Harmful pollutants to the health and the environment include particulates (soot), hydrocarbons, carbon monoxide, ozone, lead, and various oxides of nitrogen. Although not considered emission pollutants by the original California Air Resources Board (CARB) or U.S. Environmental Protection Agency (EPA) definitions, the most recent common use of the term also includes volatile organic compounds, several air toxics (most notably 1,3-Butadiene), and global pollutants such as carbon dioxide and other greenhouse gases.
Examples of zero-emission vehicle with different power sources can include muscle-powered vehicles such as bicycles, electric bicycles, and gravity racers.
Also other battery electric vehicles, which may shift emissions to the location where the electricity is generated (if the electricity comes from coal or natural gas power plants—as opposed to hydro-electric, wind power, solar power or nuclear power plants); and fuel cell vehicles powered by hydrogen, which may shift emissions to the location where the hydrogen is generated. It does not include hydrogen internal combustion engine vehicles because these do generate some emissions (although being near-emissionless). It also does not include vehicles running on 100% biofuel as these also emit exhaust gases, despite being carbon neutral overall.
Emissions from the manufacturing process are thus not included in this definition, and it has been argued that the emissions that are created during manufacture are currently of an order of magnitude that is comparable to the emissions that are created during a vehicle's operating lifetime.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students describe and explain the thermodynamic and operating principles of internal combustion engines and all fuel cell types, identify the determining physical parameters for the operating regi
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
An electric car or electric vehicle (EV) is an automobile that is propelled by one or more electric traction motors, using only energy stored in batteries. Compared to conventional internal combustion engine (ICE) vehicles, electric cars are quieter, more responsive, have superior energy conversion efficiency and no exhaust emissions and lower overall vehicle emissions (however the power plant supplying the electricity might generate its own emissions).
A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, with no secondary source of propulsion (a hydrogen fuel cell, internal combustion engine, etc.). BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) for propulsion. They derive all power from battery packs and thus have no internal combustion engine, fuel cell, or fuel tank.
A plug-in hybrid electric vehicle (PHEV) is a hybrid electric vehicle whose battery pack can be recharged by plugging a charging cable into an external electric power source, in addition to internally by its on-board internal combustion engine-powered generator. Most PHEVs are passenger cars, but there are also PHEV versions of sports cars, commercial vehicles and vans, utility trucks, buses, trains, motorcycles, mopeds, and even military vehicles.
Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated ...
Elsevier2024
,
Globally, billions of people burn fuels indoors for cooking and heating, which contributes to millions of chronic illnesses and premature deaths annually. Additionally, residential burning contributes significantly to black carbon emissions, which have the ...
Building climate risk assessment involves benchmarking a building's energy use intensity against decarbonisation pathways to mitigate the impacts on climate change. Various climate risk assessment tools and frameworks are used for commercial buildings in d ...