Concept

Classification of finite simple groups

Summary
In mathematics, the classification of finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non-isomorphic groups with the same composition series or, put in another way, the extension problem does not have a unique solution. Gorenstein (d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof. List of finite simple groups Every finite simple group is isomorphic to one of the following groups: a member of one of three infinite classes of such, namely: the cyclic groups of prime order, the alternating groups of degree at least 5, the groups of Lie type one of 26 groups called the "sporadic groups" the Tits group (which is sometimes considered a 27th sporadic group). The classification theorem has applications in many branches of mathematics, as questions about the structure of finite groups (and their action on other mathematical objects) can sometimes be reduced to questions about finite simple groups. Thanks to the classification theorem, such questions can sometimes be answered by checking each family of simple groups and each sporadic group. Daniel Gorenstein announced in 1983 that the finite simple groups had all been classified, but this was premature as he had been misinformed about the proof of the classification of quasithin groups.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood