Summary
In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter μ. It is the ratio of the magnetic induction to the magnetizing field as a function of the field in a material. The term was coined by William Thomson, 1st Baron Kelvin in 1872, and used alongside permittivity by Oliver Heaviside in 1885. The reciprocal of permeability is magnetic reluctivity. In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A2). The permeability constant μ0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum. A closely related property of materials is magnetic susceptibility, which is a dimensionless proportionality factor that indicates the degree of magnetization of a material in response to an applied magnetic field. In the macroscopic formulation of electromagnetism, there appear two different kinds of magnetic field: the magnetizing field H which is generated around electric currents and displacement currents, and also emanates from the poles of magnets. The SI units of H are amperes/meter. the magnetic flux density B which acts back on the electrical domain, by curving the motion of charges and causing electromagnetic induction. The SI units of B are volt-seconds/square meter (teslas). The concept of permeability arises since in many materials (and in vacuum), there is a simple relationship between H and B at any location or time, in that the two fields are precisely proportional to each other: where the proportionality factor μ is the permeability, which depends on the material. The permeability of vacuum (also known as permeability of free space) is a physical constant, denoted μ0. The SI units of μ are volt-seconds/ampere-meter, equivalently henry/meter.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.