Concept

Dehn twist

In geometric topology, a branch of mathematics, a Dehn twist is a certain type of self-homeomorphism of a surface (two-dimensional manifold). Suppose that c is a simple closed curve in a closed, orientable surface S. Let A be a tubular neighborhood of c. Then A is an annulus, homeomorphic to the Cartesian product of a circle and a unit interval I: Give A coordinates (s, t) where s is a complex number of the form with and t ∈ [0, 1]. Let f be the map from S to itself which is the identity outside of A and inside A we have Then f is a Dehn twist about the curve c. Dehn twists can also be defined on a non-orientable surface S, provided one starts with a 2-sided simple closed curve c on S. Consider the torus represented by a fundamental polygon with edges a and b Let a closed curve be the line along the edge a called . Given the choice of gluing homeomorphism in the figure, a tubular neighborhood of the curve will look like a band linked around a doughnut. This neighborhood is homeomorphic to an annulus, say in the complex plane. By extending to the torus the twisting map of the annulus, through the homeomorphisms of the annulus to an open cylinder to the neighborhood of , yields a Dehn twist of the torus by a. This self homeomorphism acts on the closed curve along b. In the tubular neighborhood it takes the curve of b once along the curve of a. A homeomorphism between topological spaces induces a natural isomorphism between their fundamental groups. Therefore one has an automorphism where [x] are the homotopy classes of the closed curve x in the torus. Notice and , where is the path travelled around b then a. It is a theorem of Max Dehn that maps of this form generate the mapping class group of isotopy classes of orientation-preserving homeomorphisms of any closed, oriented genus- surface. W. B. R. Lickorish later rediscovered this result with a simpler proof and in addition showed that Dehn twists along explicit curves generate the mapping class group (this is called by the punning name "Lickorish twist theorem"); this number was later improved by Stephen P.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (7)

Bounded and unbounded cohomology of homeomorphism and diffeomorphism groups

Nicolas Monod

We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
SPRINGER HEIDELBERG2023

Approximating nonabelian free groups by groups of homeomorphisms of the real line

Yash Lodha

We show that for a large class C of finitely generated groups of orientation preserving homeomorphisms of the real line, the following holds: Given a group G of rank k in C, there is a sequence of k-markings (G,S-n), n is an element of N whose limit in the ...
2020

Coherent actions by homeomorphisms on the real line or an interval

Yash Lodha

We study actions of groups by orientation preserving homeomorphisms on R (or an interval) that are minimal, have solvable germs at +/-infinity and contain a pair of elements of a certain dynamical type. We call such actions coherent. We establish that such ...
HEBREW UNIV MAGNES PRESS2020
Show more
Related people (1)
Related concepts (4)
Mapping class group
In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Consider a topological space, that is, a space with some notion of closeness between points in the space. We can consider the set of homeomorphisms from the space into itself, that is, continuous maps with continuous inverses: functions which stretch and deform the space continuously without breaking or gluing the space.
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Geometric topology
In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of simple homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.