En mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247. Le résultat concerne les systèmes de congruences (voir arithmétique modulaire). Soient des objets en nombre inconnu. Si on les range par 3 il en reste 2. Si on les range par 5, il en reste 3 et si on les range par 7, il en reste 2. Combien a-t-on d'objets ? Cette énigme est parfois associée au général comptant son armée. La résolution proposée par Sun Zi pour ce problème est la suivante : Multiplie le reste de la division par 3, c’est-à-dire 2, par 70, ajoute-lui le produit du reste de la division par 5, c’est-à-dire 3, avec 21 puis ajoute le produit du reste de la division par 7, c'est-à-dire 2 par 15. Tant que le nombre est plus grand que 105, retire 105. Mais la solution n'explique qu'imparfaitement la méthode utilisée. On peut cependant remarquer que : 70 a pour reste 1 dans la division par 3 et pour reste 0 dans les divisions par 5 et 7 ; 21 a pour reste 1 dans la division par 5 et pour reste 0 dans les divisions par 3 et 7 ; 15 a pour reste 1 dans la division par 7 et pour reste 0 dans les divisions par 3 et 5. Le nombre 233 (2 × 70 + 3 × 21 + 2 × 15) a bien alors pour restes respectifs 2, 3 et 2 dans les divisions par 3, 5 et 7. Enfin, comme 105 (3×5×7) a pour reste 0 dans les trois types de division, on peut l’ôter ou l'ajouter autant de fois que l'on veut sans changer les valeurs des restes. La plus petite valeur pour le nombre d'objets est alors de 23.
Kim-Manuel Klein, Klaus Jansen, Alexandra Anna Lassota