In the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G. That is, it is a sequence of vertices in G such that each two adjacent vertices in the sequence are connected by an edge in G, and each two nonadjacent vertices in the sequence are not connected by any edge in G. An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem.
Similarly, an induced cycle is a cycle that is an induced subgraph of G; induced cycles are also called chordless cycles or (when the length of the cycle is four or more) holes. An antihole is a hole in the complement of G, i.e., an antihole is a complement of a hole.
The length of the longest induced path in a graph has sometimes been called the detour number of the graph; for sparse graphs, having bounded detour number is equivalent to having bounded tree-depth. The induced path number of a graph G is the smallest number of induced paths into which the vertices of the graph may be partitioned, and the closely related path cover number of G is the smallest number of induced paths that together include all vertices of G. The girth of a graph is the length of its shortest cycle, but this cycle must be an induced cycle as any chord could be used to produce a shorter cycle; for similar reasons the odd girth of a graph is also the length of its shortest odd induced cycle.
The illustration shows a cube, a graph with eight vertices and twelve edges, and an induced path of length four in this graph. A straightforward case analysis shows that there can be no longer induced path in the cube, although it has an induced cycle of length six. The problem of finding the longest induced path or cycle in a hypercube, first posed by , is known as the snake-in-the-box problem, and it has been studied extensively due to its applications in coding theory and engineering.
Many important graph families can be characterized in terms of the induced paths or cycles of the graphs in the family.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
The classical distinction between polynomial time solvable and NP-hard problems is often too coarse. This course covers techniques for proving more fine-grained lower and upper bounds on complexity of
In graph theory, a branch of discrete mathematics, a distance-hereditary graph (also called a completely separable graph) is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph. Distance-hereditary graphs were named and first studied by , although an equivalent class of graphs was already shown to be perfect in 1970 by Olaru and Sachs.
In graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs.
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges (from the original graph) connecting pairs of vertices in that subset. Formally, let be any graph, and let be any subset of vertices of G. Then the induced subgraph is the graph whose vertex set is and whose edge set consists of all of the edges in that have both endpoints in . That is, for any two vertices , and are adjacent in if and only if they are adjacent in .
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in r ...
New York2023
,
We are interested in multilayer graph clustering, which aims at dividing the graph nodes into categories or communities. To do so, we propose to learn a clustering-friendly embedding of the graph nodes by solving an optimization problem that involves a fid ...
Understanding epidemic propagation in large networks is an important but challenging task, especially since we usually lack information, and the information that we have is often counter-intuitive. An illustrative example is the dependence of the final siz ...