In topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs. Complementarily, an intrinsically linked graph is a graph that does not have a linkless embedding.
Flat embeddings are automatically linkless, but not vice versa. The complete graph K_6, the Petersen graph, and the other five graphs in the Petersen family do not have linkless embeddings. Every graph minor of a linklessly embeddable graph is again linklessly embeddable, as is every graph that can be reached from a linklessly embeddable graph by a Y-Δ transform. The linklessly embeddable graphs have the Petersen family graphs as their forbidden minors, and include the planar graphs and apex graphs. They may be recognized, and a flat embedding may be constructed for them, in O(n^2).
When the circle is mapped to three-dimensional Euclidean space by an injective function (a continuous function that does not map two different points of the circle to the same point of space), its image is a closed curve.
Two disjoint closed curves that both lie on the same plane are unlinked, and more generally a pair of disjoint closed curves is said to be unlinked when there is a continuous deformation of space that moves them both onto the same plane, without either curve passing through the other or through itself. If there is no such continuous motion, the two curves are said to be linked. For example, the Hopf link is formed by two circles that each pass through the disk spanned by the other. It forms the simplest example of a pair of linked curves, but it is possible for curves to be linked in other more complicated ways.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves (this is not true for curves in most 3-manifolds, where linking numbers can also be fractions or just not exist at all).
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly k are called k-trees, and the graphs with treewidth at most k are called partial k-trees. Many other well-studied graph families also have bounded treewidth.
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
A graph H is a minor of a second graph G if G can be transformed into H by two operations: 1) deleting nodes and/or edges, or 2) contracting edges. Coarse-grained reconfigurable array (CGRA) application mapping is closely related to the graph minor problem ...
2023
, , ,
Maximal subgraph mining is increasingly important in various domains, including bioinformatics, genomics, and chemistry, as it helps identify common characteristics among a set of graphs and enables their classification into different categories. Existing ...
ELSEVIER SCIENCE INC2023
, ,
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...