In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are either all integers or all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz quaternions is
That is, either a, b, c, d are all integers, or they are all half-integers.
H is closed under quaternion multiplication and addition, which makes it a subring of the ring of all quaternions H. Hurwitz quaternions were introduced by .
A Lipschitz quaternion (or Lipschitz integer) is a quaternion whose components are all integers. The set of all Lipschitz quaternions
forms a subring of the Hurwitz quaternions H. Hurwitz integers have the advantage over Lipschitz integers that it is possible to perform Euclidean division on them, obtaining a small remainder.
Both the Hurwitz and Lipschitz quaternions are examples of noncommutative domains which are not division rings.
As an additive group, H is free abelian with generators {(1 + i + j + k) / 2, i, j, k}. It therefore forms a lattice in R4. This lattice is known as the F4 lattice since it is the root lattice of the semisimple Lie algebra F4. The Lipschitz quaternions L form an index 2 sublattice of H.
The group of units in L is the order 8 quaternion group Q = {±1, ±i, ±j, ±k}. The group of units in H is a nonabelian group of order 24 known as the binary tetrahedral group. The elements of this group include the 8 elements of Q along with the 16 quaternions {(±1 ± i ± j ± k) / 2}, where signs may be taken in any combination. The quaternion group is a normal subgroup of the binary tetrahedral group U(H). The elements of U(H), which all have norm 1, form the vertices of the 24-cell inscribed in the 3-sphere.
The Hurwitz quaternions form an order (in the sense of ring theory) in the division ring of quaternions with rational components. It is in fact a maximal order; this accounts for its importance. The Lipschitz quaternions, which are the more obvious candidate for the idea of an integral quaternion, also form an order.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
We start this short note by introducing two remarkable mathematical objects: the E8E8 root lattice Lambda8Lambda8 in 8-dimensional Euclidean space and the Leech lattice Lambda24Lambda24 in 24-dimensional space. These two lattices stand out among their lat ...
In mathematics, the E_8 lattice is a special lattice in R^8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E_8 root system. The norm of the E_8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H.
In mathematics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the form where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then , and the resulting unit vector is termed a right versor.
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
The minimal faithful permutation degree (G) of a finite group G is the least nonnegative integer n such that G embeds in the symmetric group Sym(n). Clearly (G x H) (G) + (H) for all finite groups G and H. In 1975, Wright ([10]) proved that equality occurs ...
Eye movements consist of spherical rotations, with orientation generally constrained by Listing’s law. Our main result is a complete explicit formulation of ballistic eye movement under the Listing constraint. We present a conceptual framework for eye move ...