In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.
Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded (finite) 3D object have one or more common fixed points. We follow the usual convention by choosing the origin as one of them.
The symmetry group of an object is sometimes also called its full symmetry group, as opposed to its proper symmetry group, the intersection of its full symmetry group with E+(3), which consists of all direct isometries, i.e., isometries preserving orientation. For a bounded object, the proper symmetry group is called its rotation group. It is the intersection of its full symmetry group with SO(3), the full rotation group of the 3D space. The rotation group of a bounded object is equal to its full symmetry group if and only if the object is chiral.
The point groups that are generated purely by a finite set of reflection mirror planes passing through the same point are the finite Coxeter groups, represented by Coxeter notation.
The point groups in three dimensions are heavily used in chemistry, especially to describe the symmetries of a molecule and of molecular orbitals forming covalent bonds, and in this context they are also called molecular point groups.
Euclidean group#Overview of isometries in up to three dimensions
The symmetry group operations (symmetry operations) are the isometries of three-dimensional space R3 that leave the origin fixed, forming the group O(3). These operations can be categorized as:
The direct (orientation-preserving) symmetry operations, which form the group SO(3):
The identity operation, denoted by E or the identity matrix I.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx.
In group theory, a dicyclic group (notation Dicn or Q4n, ) is a particular kind of non-abelian group of order 4n (n > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as: More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.
In mathematics, the pin group is a certain subgroup of the Clifford algebra associated to a quadratic space. It maps 2-to-1 to the orthogonal group, just as the spin group maps 2-to-1 to the special orthogonal group. In general the map from the Pin group to the orthogonal group is not surjective or a universal covering space, but if the quadratic form is definite (and dimension is greater than 2), it is both.
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...
We introduce a classification of the radial spin textures in momentum space that emerge at the high-symmetry points in crystals characterized by nonpolar chiral point groups (D2, D3, D4, D6, T, O). Based on the symmetry constraints imposed by these point g ...
The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...