Summary
Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data. Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in floating-gate memory cells consisting of floating-gate MOSFETs (metal–oxide–semiconductor field-effect transistors), including flash memory storage such as NAND flash and solid-state drives (SSD). Other examples of non-volatile memory include read-only memory (ROM), EPROM (erasable programmable ROM) and EEPROM (electrically erasable programmable ROM), ferroelectric RAM, most types of computer data storage devices (e.g. disk storage, hard disk drives, optical discs, floppy disks, and magnetic tape), and early computer storage methods such as punched tape and cards. Non-volatile memory is typically used for the task of secondary storage or long-term persistent storage. The most widely used form of primary storage today is a volatile form of random access memory (RAM), meaning that when the computer is shut down, anything contained in RAM is lost. However, most forms of non-volatile memory have limitations that make them unsuitable for use as primary storage. Typically, non-volatile memory costs more, provides lower performance, or has a limited lifetime compared to volatile random access memory. Non-volatile data storage can be categorized into electrically addressed systems (read-only memory) and mechanically addressed systems (hard disks, optical disc, magnetic tape, holographic memory, and such). Generally speaking, electrically addressed systems are expensive, have limited capacity, but are fast, whereas mechanically addressed systems cost less per bit, but are slower. Non-volatile random-access memory Electrically addressed semiconductor non-volatile memories can be categorized according to their write mechanism. Mask ROMs are factory programmable only and typically used for large-volume products which are not required to be updated after the memory device is manufactured.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.