Summary
In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics and digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used. For applications in control theory, according to , rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. According to , the term "rise time" applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time. Rise time is an analog parameter of fundamental importance in high speed electronics, since it is a measure of the ability of a circuit to respond to fast input signals. There have been many efforts to reduce the rise times of circuits, generators, and data measuring and transmission equipment. These reductions tend to stem from research on faster electron devices and from techniques of reduction in stray circuit parameters (mainly capacitances and inductances). For applications outside the realm of high speed electronics, long (compared to the attainable state of the art) rise times are sometimes desirable: examples are the dimming of a light, where a longer rise-time results, amongst other things, in a longer life for the bulb, or in the control of analog signals by digital ones by means of an analog switch, where a longer rise time means lower capacitive feedthrough, and thus lower coupling noise to the controlled analog signal lines. For a given system output, its rise time depend both on the rise time of input signal and on the characteristics of the system.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-221: Dynamical systems
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
MATH-351: Advanced numerical analysis
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
ME-321: Control systems + TP
Provides the students with basic notions and tools for the analysis and control of dynamic systems. Shows them how to design controllers and analyze the performance of controlled systems.
Show more
Related lectures (32)
System Analysis in Time Domain
Explores system analysis in the time domain, covering mathematical modeling, transfer functions, responses, and system identification.
Second Order Systems: Response Analysis
Analyzes the response of second-order systems to different inputs and explores the significance of pole locations in determining system behavior.
System Analysis in Time Domain
Explores system analysis in the time domain, covering first and second-order systems, stability, and transient response.
Show more
Related publications (35)
Related concepts (16)
Time constant
In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI system. In the time domain, the usual choice to explore the time response is through the step response to a step input, or the impulse response to a Dirac delta function input.
Settling time
In control theory the settling time of a dynamical system such as an amplifier or other output device is the time elapsed from the application of an ideal instantaneous step input to the time at which the amplifier output has entered and remained within a specified error band. Settling time includes a propagation delay, plus the time required for the output to slew to the vicinity of the final value, recover from the overload condition associated with slew, and finally settle to within the specified error.
Step response
The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time. The concept can be extended to the abstract mathematical notion of a dynamical system using an evolution parameter.
Show more