Résumé
In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics and digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used. For applications in control theory, according to , rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. According to , the term "rise time" applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time. Rise time is an analog parameter of fundamental importance in high speed electronics, since it is a measure of the ability of a circuit to respond to fast input signals. There have been many efforts to reduce the rise times of circuits, generators, and data measuring and transmission equipment. These reductions tend to stem from research on faster electron devices and from techniques of reduction in stray circuit parameters (mainly capacitances and inductances). For applications outside the realm of high speed electronics, long (compared to the attainable state of the art) rise times are sometimes desirable: examples are the dimming of a light, where a longer rise-time results, amongst other things, in a longer life for the bulb, or in the control of analog signals by digital ones by means of an analog switch, where a longer rise time means lower capacitive feedthrough, and thus lower coupling noise to the controlled analog signal lines. For a given system output, its rise time depend both on the rise time of input signal and on the characteristics of the system.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
ME-221: Dynamical systems
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
MATH-351: Advanced numerical analysis
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
ME-321: Control systems + TP
Provides the students with basic notions and tools for the analysis and control of dynamic systems. Shows them how to design controllers and analyze the performance of controlled systems.
Afficher plus
Publications associées (35)
Personnes associées (3)
Concepts associés (16)
Constante de temps
En physique, une constante de temps est une grandeur, homogène à un temps, caractérisant la rapidité de l'évolution d'une grandeur physique dans le temps , particulièrement lorsque cette évolution est exponentielle . La constante de temps est liée à l'étude de la réponse impulsionnelle d'un système. La durée nécessaire au retour à l'équilibre après la disparition d'une perturbation est appelée temps de relaxation.
Settling time
In control theory the settling time of a dynamical system such as an amplifier or other output device is the time elapsed from the application of an ideal instantaneous step input to the time at which the amplifier output has entered and remained within a specified error band. Settling time includes a propagation delay, plus the time required for the output to slew to the vicinity of the final value, recover from the overload condition associated with slew, and finally settle to within the specified error.
Réponse indicielle
En automatique la réponse indicielle est la réponse d'un système dynamique à une fonction marche de Heaviside communément appelée échelon. Si le système est un système linéaire invariant (SLI) à temps continu ou discret, alors la réponse indicielle est définie par les relations respectives suivantes : Lorsque le système est asymptotiquement stable, la réponse indicielle converge vers une valeur limite (asymptote horizontale) appelée valeur stationnaire ou finale.
Afficher plus