Prestressed concrete is a form of concrete used in construction. It is substantially "prestressed" (compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service.
This compression is produced by the tensioning of high-strength "tendons" located within or adjacent to the concrete and is done to improve the performance of the concrete in service. Tendons may consist of single wires, multi-wire strands or threaded bars that are most commonly made from high-tensile steels, carbon fiber or aramid fiber. The essence of prestressed concrete is that once the initial compression has been applied, the resulting material has the characteristics of high-strength concrete when subject to any subsequent compression forces and of ductile high-strength steel when subject to tension forces. This can result in improved structural capacity and/or serviceability compared with conventionally reinforced concrete in many situations. In a prestressed concrete member, the internal stresses are introduced in a planned manner so that the stresses resulting from the imposed loads are counteracted to the desired degree.
Prestressed concrete is used in a wide range of building and civil structures where its improved performance can allow for longer spans, reduced structural thicknesses, and material savings compared with simple reinforced concrete. Typical applications include high-rise buildings, residential slabs, foundation systems, bridge and dam structures, silos and tanks, industrial pavements and nuclear containment structures.
First used in the late-nineteenth century, prestressed concrete has developed beyond pre-tensioning to include post-tensioning, which occurs after the concrete is cast. Tensioning systems may be classed as either monostrand, where each tendon's strand or wire is stressed individually, or multi-strand, where all strands or wires in a tendon are stressed simultaneously. Tendons may be located either within the concrete volume (internal prestressing) or wholly outside of it (external prestressing).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la conception et au dimensionnement des ponts en béton armé et précontraint, ainsi qu'en construction mixte. Ce cours porte sur le choix du type de pont, des principales dimensions des
Ce cours traite les principaux aspects de la conception et du dimensionnement des ponts en béton armé et précontraint. L'accent est mis sur les ponts poutres. Etude des aspects suivants : optimisation
The course deals with the design of precast reinforced concrete structures, both for bridges and for buildings.
The course is focused in learning by projects supplemented by some lectures by the teac
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
L'Art des Structures 2 propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours, qui fait suite au cours l'Art des Structures 1,
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving . In many domestic and industrial buildings, a thick concrete slab supported on foundations or directly on the subsoil, is used to construct the ground floor. These slabs are generally classified as ground-bearing or suspended.
Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure. Formwork may be made of wood, metal, plastic, or composite materials: Traditional timber formwork. The formwork is built on site out of timber and plywood or moisture-resistant particleboard.
The Millau Viaduct (Viaduc de Millau, vja.dyk də mi.jo) is a multispan cable-stayed bridge completed in 2004 across the gorge valley of the Tarn near (west of) Millau in the Aveyron department in the Occitanie Region, in Southern France. The design team was led by engineer Michel Virlogeux and English architect Norman Foster. it is the tallest bridge in the world, having a structural height of . The Millau Viaduct is part of the A75–A71 autoroute axis from Paris to Béziers and Montpellier.
Explores the design and safety of pre-stressed reinforced concrete bridges, emphasizing accurate calculations and the impact of uncertainties in structural design.
Existing concrete buildings should be retained for as long as possible to reduce the environmental burden of demolition and new construction. However, when urban pressure makes demolition unavoidable, salvaging and reusing concrete elements elsewhere in ne ...
2024
, ,
The study explores an original idea that responds to the urgent need to reduce the detrimental environmental impacts of load-bearing floor construction in new buildings by reusing saw-cut reinforced concrete (RC) pieces salvaged from soon-to-be demolished ...
Bond between reinforcing bars and concrete has been the focus of extensive research over the last century. This is well-justified as the functioning of reinforced concrete intimately depends on the interaction between rebar and concrete, as for example cra ...