Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics".
The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business.
Research in discrete mathematics increased in the latter half of the twentieth century partly due to the development of digital computers which operate in "discrete" steps and store data in "discrete" bits. Concepts and notations from discrete mathematics are useful in studying and describing objects and problems in branches of computer science, such as computer algorithms, programming languages, cryptography, automated theorem proving, and software development. Conversely, computer implementations are significant in applying ideas from discrete mathematics to real-world problems.
Although the main objects of study in discrete mathematics are discrete objects, analytic methods from "continuous" mathematics are often employed as well.
In university curricula, discrete mathematics appeared in the 1980s, initially as a computer science support course; its contents were somewhat haphazard at the time.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course focuses on software security fundamentals, secure coding guidelines and principles, and advanced software security concepts. Students learn to assess and understand threats, learn how to d
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History of computer science While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved.
Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models.
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...
A space-time adaptive algorithm is presented to solve the incompressible Navier-Stokes equations. Time discretization is performed with the BDF2 method while continuous, piecewise linear anisotropic finite elements are used for the space discretization. Th ...
San Diego2023
,
This spreading of prion proteins is at the basis of brain neurodegeneration. This paper deals with the numerical modelling of the misfolding process of a-synuclein in Parkinson's disease. We introduce and analyse a discontinuous Galerkin method for the sem ...