In mathematics, the exponential function can be characterized in many ways. The following characterizations (definitions) are most common. This article discusses why each characterization makes sense, and why the characterizations are independent of and equivalent to each other. As a special case of these considerations, it will be demonstrated that the three most common definitions given for the mathematical constant e are equivalent to each other.
The six most common definitions of the exponential function exp(x) = ex for real x are:
Define ex by the limit
Define ex as the value of the infinite series (Here n! denotes the factorial of n. One proof that e is irrational uses a special case of this formula.)
Define ex to be the unique number y > 0 such that This is as the inverse of the natural logarithm function, which is defined by this integral.
Define ex to be the unique solution to the initial value problem (Here, y′ denotes the derivative of y.)
The exponential function ex is the unique function f with f(1) = e and f(x + y) = f(x) f(y) for all x and y that satisfies any one of the following additional conditions: For the uniqueness, one must impose some additional condition like those above, since otherwise other functions can be constructed using a basis for the real numbers over the rationals, as described by Hewitt and Stromberg. One could also replace f(1) = e and the "additional condition" with the single condition f′(0) = 1.
Let e be the unique positive real number satisfying This limit can be shown to exist. Then define ex to be the exponential function with this base. This definition is particularly suited to computing the derivative of the exponential function.
One way of defining the exponential function for domains larger than the domain of real numbers is to first define it for the domain of real numbers using one of the above characterizations and then extend it to larger domains in a way which would work for any analytic function.
It is also possible to use the characterisations directly for the larger domain, though some problems may arise.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
The number e, also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of natural logarithms. It is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series It is also the unique positive number a such that the graph of the function y = ax has a slope of 1 at x = 0.
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for any real number x: where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").
In mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the (power of) n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: The exponent is usually shown as a superscript to the right of the base.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
This work develops novel rational Krylov methods for updating a large-scale matrix function f(A) when A is subject to low-rank modifications. It extends our previous work in this context on polynomial Krylov methods, for which we present a simplified conve ...
We prove exponential convergence to equilibrium for the Fredrickson-Andersen one-spin facilitated model on bounded degree graphs satisfying a subexponential, but larger than polynomial, growth condition. This was a classical conjecture related to non-attra ...
We consider large Hermitian matrices whose entries are defined by evaluating the exponential function along orbits of the skew-shift (2j)ω+jy+xmod1 for irrational ω. We prove that the eigenvalue distribution of these matrices conv ...