Résumé
La formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels. x représente la mesure (en radians) de l'angle orienté que fait la demi-droite d'extrémité l'origine et passant par un point du cercle unité avec la demi-droite des réels positifs. La formule n'est valable que si sin et cos ont des arguments exprimés en radians plutôt qu'en degrés. La démonstration est fondée sur les développements en série entière de la fonction exponentielle z ↦ e de la variable complexe z et des fonctions sin et cos considérées à variables réelles. En fait, la même démonstration montre que la formule d'Euler est encore valable pour tous les nombres complexes x. La formule établit un puissant lien entre l'analyse et la trigonométrie. Selon Richard Feynman, c'est Elle est utilisée pour représenter les nombres complexes sous forme trigonométrique et permet la définition du logarithme pour les arguments complexes. En utilisant les propriétés de l'exponentielle et (qui sont aussi valables pour tous les nombres complexes a, b et pour tout entier k), il devient facile de dériver plusieurs identités trigonométriques ou d'en déduire la formule de Moivre. La formule d'Euler permet une interprétation des fonctions cosinus et sinus comme combinaisons linéaires de fonctions exponentielles : Ces formules (aussi appelées formules d'Euler) constituent la définition moderne des fonctions et (y compris lorsque x est une variable complexe) et sont équivalentes à la formule d'Euler (appliquée à x et à –x), qui devient alors une tautologie.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.