Concept

Handlebody

Summary
In the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds. Handles are used to particularly study 3-manifolds. Handlebodies play a similar role in the study of manifolds as simplicial complexes and CW complexes play in homotopy theory, allowing one to analyze a space in terms of individual pieces and their interactions. If is an -dimensional manifold with boundary, and (where represents an n-sphere and is an n-ball) is an embedding, the -dimensional manifold with boundary is said to be obtained from by attaching an -handle. The boundary is obtained from by surgery. As trivial examples, note that attaching a 0-handle is just taking a disjoint union with a ball, and that attaching an n-handle to is gluing in a ball along any sphere component of . Morse theory was used by Thom and Milnor to prove that every manifold (with or without boundary) is a handlebody, meaning that it has an expression as a union of handles. The expression is non-unique: the manipulation of handlebody decompositions is an essential ingredient of the proof of the Smale h-cobordism theorem, and its generalization to the s-cobordism theorem. A manifold is called a "k-handlebody" if it is the union of r-handles, for r at most k. This is not the same as the dimension of the manifold. For instance, a 4-dimensional 2-handlebody is a union of 0-handles, 1-handles and 2-handles. Any manifold is an n-handlebody, that is, any manifold is the union of handles. It isn't too hard to see that a manifold is an (n-1)-handlebody if and only if it has non-empty boundary. Any handlebody decomposition of a manifold defines a CW complex decomposition of the manifold, since attaching an r-handle is the same, up to homotopy equivalence, as attaching an r-cell. However, a handlebody decomposition gives more information than just the homotopy type of the manifold.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.