Concept

Handlebody

Résumé
In the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds. Handles are used to particularly study 3-manifolds. Handlebodies play a similar role in the study of manifolds as simplicial complexes and CW complexes play in homotopy theory, allowing one to analyze a space in terms of individual pieces and their interactions. If is an -dimensional manifold with boundary, and (where represents an n-sphere and is an n-ball) is an embedding, the -dimensional manifold with boundary is said to be obtained from by attaching an -handle. The boundary is obtained from by surgery. As trivial examples, note that attaching a 0-handle is just taking a disjoint union with a ball, and that attaching an n-handle to is gluing in a ball along any sphere component of . Morse theory was used by Thom and Milnor to prove that every manifold (with or without boundary) is a handlebody, meaning that it has an expression as a union of handles. The expression is non-unique: the manipulation of handlebody decompositions is an essential ingredient of the proof of the Smale h-cobordism theorem, and its generalization to the s-cobordism theorem. A manifold is called a "k-handlebody" if it is the union of r-handles, for r at most k. This is not the same as the dimension of the manifold. For instance, a 4-dimensional 2-handlebody is a union of 0-handles, 1-handles and 2-handles. Any manifold is an n-handlebody, that is, any manifold is the union of handles. It isn't too hard to see that a manifold is an (n-1)-handlebody if and only if it has non-empty boundary. Any handlebody decomposition of a manifold defines a CW complex decomposition of the manifold, since attaching an r-handle is the same, up to homotopy equivalence, as attaching an r-cell. However, a handlebody decomposition gives more information than just the homotopy type of the manifold.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.