Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered for any given number of random variables. The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables. It also encodes the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
In the formal mathematical setup of measure theory, the joint distribution is given by the pushforward measure, by the map obtained by pairing together the given random variables, of the sample space's probability measure.
In the case of real-valued random variables, the joint distribution, as a particular multivariate distribution, may be expressed by a multivariate cumulative distribution function, or by a multivariate probability density function together with a multivariate probability mass function. In the special case of continuous random variables, it is sufficient to consider probability density functions, and in the case of discrete random variables, it is sufficient to consider probability mass functions.
Each of two urns contains twice as many red balls as blue balls, and no others, and one ball is randomly selected from each urn, with the two draws independent of each other. Let and be discrete random variables associated with the outcomes of the draw from the first urn and second urn respectively. The probability of drawing a red ball from either of the urns is 2/3, and the probability of drawing a blue ball is 1/3. The joint probability distribution is presented in the following table:
Each of the four inner cells shows the probability of a particular combination of results from the two draws; these probabilities are the joint distribution.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample.
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
Amer Chemical Soc2024
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...