vignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables.
Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe. La description des notions correspondantes, certaines d'entre elles généralisant les notions relatives à une seule variable, est simplifiée de deux manières :
Seules les variables continues sont considérées. Il est possible de passer aux variables discrètes en utilisant la fonction de Heaviside et la fonction de Dirac.
Pour éviter la lourdeur des formules, l'exposé est limité à deux variables.
La probabilité pour que la variable aléatoire prenne une valeur numérique inférieure à alors que prend une valeur inférieure à définit la fonction de répartition :
Celle-ci est non décroissante en et en entre la valeur 0 lorsque les deux variables tendent vers et la valeur 1 lorsqu'elles tendent toutes deux vers .
La densité de probabilité jointe ou loi jointe s'obtient par une double dérivation :
Une intégration par rapport à (resp. ) donne la densité de probabilité marginale ou loi marginale de (resp. ) :
Le rapport de la densité de probabilité jointe (relative à une valeur ) à la densité marginale de (concernant toutes les valeurs ) représente la densité de probabilité conditionnelle de sous la condition :
L'espérance mathématique d'une fonction de deux variables généralise la formule donnée pour une seule variable :
L'opérateur espérance est linéaire ; en particulier, l'espérance (la moyenne) d'une somme de deux variables aléatoires est la somme des moyennes :
Parmi ces espérances, une double transformation de Fourier conduit à la fonction caractéristique:
Comme pour le cas d'une seule variable aléatoire un développement en série permet de faire apparaître les moments que l'on peut centrer par soustraction des moyennes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
vignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
vignette|Paire de dés L'indépendance est une notion probabiliste qualifiant de manière intuitive des événements aléatoires n'ayant aucune influence l'un sur l'autre. Il s'agit d'une notion très importante en statistique et en théorie des probabilités. Par exemple, la valeur d'un premier lancer de dés n'a aucune influence sur la valeur du second lancer. De même, pour un lancer, le fait dobtenir une valeur inférieure ou égale à quatre n'influe en rien sur la probabilité que le résultat soit pair ou impair : les deux événements sont dits indépendants.
En théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
Amer Chemical Soc2024
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
EPFL2024
,
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...