Résumé
vignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe. La description des notions correspondantes, certaines d'entre elles généralisant les notions relatives à une seule variable, est simplifiée de deux manières : Seules les variables continues sont considérées. Il est possible de passer aux variables discrètes en utilisant la fonction de Heaviside et la fonction de Dirac. Pour éviter la lourdeur des formules, l'exposé est limité à deux variables. La probabilité pour que la variable aléatoire prenne une valeur numérique inférieure à alors que prend une valeur inférieure à définit la fonction de répartition : Celle-ci est non décroissante en et en entre la valeur 0 lorsque les deux variables tendent vers et la valeur 1 lorsqu'elles tendent toutes deux vers . La densité de probabilité jointe ou loi jointe s'obtient par une double dérivation : Une intégration par rapport à (resp. ) donne la densité de probabilité marginale ou loi marginale de (resp. ) : Le rapport de la densité de probabilité jointe (relative à une valeur ) à la densité marginale de (concernant toutes les valeurs ) représente la densité de probabilité conditionnelle de sous la condition : L'espérance mathématique d'une fonction de deux variables généralise la formule donnée pour une seule variable : L'opérateur espérance est linéaire ; en particulier, l'espérance (la moyenne) d'une somme de deux variables aléatoires est la somme des moyennes : Parmi ces espérances, une double transformation de Fourier conduit à la fonction caractéristique: Comme pour le cas d'une seule variable aléatoire un développement en série permet de faire apparaître les moments que l'on peut centrer par soustraction des moyennes.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.