Sea surface temperature (SST), or ocean surface temperature, is the ocean temperature close to the surface. The exact meaning of surface varies according to the measurement method used, but it is between and below the sea surface. Air masses in the Earth's atmosphere are highly modified by sea surface temperatures within a short distance of the shore. Localized areas of heavy snow can form in bands downwind of warm water bodies within an otherwise cold air mass. Warm sea surface temperatures are known to be a cause of tropical cyclogenesis over the Earth's oceans. Tropical cyclones can also cause a cool wake, due to turbulent mixing of the upper of the ocean. SST changes diurnally, like the air above it, but to a lesser degree. There is less SST variation on breezy days than on calm days. In addition, ocean currents, such as the Atlantic Multidecadal Oscillation (AMO), can affect SST's on multi-decadal time scales, and a major impact results from the global thermohaline circulation, which affects average SST significantly throughout most of the world's oceans.
Coastal SSTs can cause offshore winds to generate upwelling, which can significantly cool or warm nearby landmasses, but shallower waters over a continental shelf are often warmer. Onshore winds can cause a considerable warm-up even in areas where upwelling is fairly constant, such as the northwest coast of South America. Its values are important within numerical weather prediction as the SST influences the atmosphere above, such as in the formation of sea breezes and sea fog. It is also used to calibrate measurements from weather satellites.
It is very likely that global mean sea surface temperature increased by 0.88°C between 1850-1900 and 2011-2020 due to global warming, with most of that warming (0.60°C) occurring between 1980 and 2020. Land surface temperatures have increased faster than ocean temperatures as the ocean absorbs about 92% of excess heat generated by climate change.
Ocean temperature
Sea surface temperature (SST), or ocean surface temperature, is the water temperature close to the ocean's surface.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane (ˈhʌrᵻkən,_-keɪn), typhoon (taɪ'fuːn), tropical storm, cyclonic storm, tropical depression, or simply cyclone.
The ocean (also known as the sea or the world ocean) is a body of salt water that covers approximately 70.8% of the Earth and contains 97% of Earth's water. The term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. Distinct names are used to identify five different areas of the ocean: Pacific (the largest), Atlantic, Indian, Southern, and Arctic (the smallest). Seawater covers approximately of the planet.
In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began. A large number of climate proxies have been studied from a variety of geologic contexts.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
Le cours présente les enjeux mondiaux liés au climat: système climatique et prévisions ; impacts sur écosystèmes et biodiversité ; cadrage historique et débat public ; objectifs et politiques climatiq
The atmospheric layer adjacent to the earth's surface is of crucial importance for weather models due to the exchange of energy between the surface and the atmosphere. This exchange is dependent on the various surface properties and influences the state of ...
Understanding the cooling service provided by vegetation in cities is important to inform urban policy and planning. However, the performance of decision-support tools estimating heat mitigation for urban greening strategies has not been evaluated systemat ...
Climate changes influence lake hydrodynamics and radiation levels and thus may affect the fate and transport of waterborne pathogens in lakes. This study examines the impact of climate change on the fate, transport, and associated risks of four waterborne ...