Fractionation is a separation process in which a certain quantity of a mixture (of gasses, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the composition varies according to a gradient. Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run. This property sets it apart from other separation techniques.
Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gasses are separated by fractional distillation by difference in boiling point. Fractionation of components also takes place in column chromatography by a difference in affinity between stationary phase and the mobile phase. In fractional crystallization and fractional freezing, chemical substances are fractionated based on difference in solubility at a given temperature. In cell fractionation, cell components are separated by difference in mass.
A typical protocol to isolate a pure chemical agent from natural origin is, step-by-step separation of extracted components based on differences in their bioassay-guided fractionation physicochemical properties, and assessing the biological activity, followed by next round of separation and assaying. Typically, such work is initiated after a given crude extract is deemed "active" in a particular in vitro assay.
Blood fractionation
The process of blood fractionation involves separation of blood into its main components. Blood fractionation refers generally to the process of separation using a centrifuge (centrifugation), after which three major blood components can be visualized: plasma, buffy coat and erythrocytes (blood cells). These separated components can be analyzed and often further separated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, a scientific process of separating two or more substance in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents. In some cases, a separation may fully divide the mixture into pure constituents. Separations exploit differences in chemical properties or physical properties (such as size, shape, mass, density, or chemical affinity) between the constituents of a mixture.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
Sublimation influences the water storage in snow covers and glaciers, which is important for water use and projections of the sea level rise. Yet, it is challenging to quantify sublimation for large areas or in conditions of snow transport. In-situ measure ...
The adoption of blended cements to reduce the carbon footprint has increased significantly over the last decades. Clays containing kaolinite are a promising choice due to their widespread availability. Kaolinite content is the major factor controlling the ...
Atmospheric clusters play a key role in atmospheric new particle formation and they are a sensitive indicator for atmospheric chemistry. Both the formation and loss of atmospheric clusters include a complex set of interlinked physical and chemical processe ...