Evolution-Data Optimized (EV-DO, EVDO, etc.) is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. EV-DO is an evolution of the CDMA2000 (IS-2000) standard which supports high data rates and can be deployed alongside a wireless carrier's voice services. It uses advanced multiplexing techniques including code-division multiple access (CDMA) as well as time-division multiplexing (TDM) to maximize throughput. It is a part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.
EV-DO service was discontinued in much of Canada in 2015.
An EV-DO channel has a bandwidth of 1.25 MHz, the same bandwidth size that IS-95A (IS-95) and IS-2000 (1xRTT) use, though the channel structure is very different. The back-end network is entirely packet-based, and is not constrained by restrictions typically present on a circuit switched network.
The EV-DO feature of CDMA2000 networks provides access to mobile devices with forward link air interface speeds of up to 2.4 Mbit/s with Rel. 0 and up to 3.1 Mbit/s with Rev. A. The reverse link rate for Rel. 0 can operate up to 153 kbit/s, while Rev. A can operate at up to 1.8 Mbit/s. It was designed to be operated end-to-end as an IP based network, and can support any application which can operate on such a network and bit rate constraints.
There have been several revisions of the standard, starting with Release 0 (Rel. 0). This was later expanded upon with Revision A (Rev. A) to support quality of service (to improve latency) and higher rates on the forward and reverse link. In late 2006, Revision B (Rev. B) was published, whose features include the ability to bundle multiple carriers to achieve even higher rates and lower latencies (see TIA-856 Rev. B below). The upgrade from EV-DO Rev. A to Rev.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides a detailed description of the organization and operating principles of mobile and wireless communication networks.
Mobile television is television watched on a small handheld or mobile device, typically developed for that purpose. It includes service delivered via mobile phone networks, received free-to-air via terrestrial television stations, or via satellite broadcast. Regular broadcast standards or special mobile TV transmission formats can be used. Additional features include downloading TV programs and podcasts from the Internet and storing programming for later viewing.
High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols—High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA)—that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further-improved 3GPP standard called Evolved High Speed Packet Access (also known as HSPA+) was released late in 2008, with subsequent worldwide adoption beginning in 2010.
Mobile broadband is the marketing term for wireless Internet access via mobile networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone (possibly tethered) or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations.
Introduction: Quantitative proteomics using mass spectrometry is performed via label-free or label-based approaches. Labeling strategies rely on the incorporation of stable heavy isotopes by metabolic, enzymatic, or chemical routes. Isobaric labeling uses ...
TAYLOR & FRANCIS LTD2020
Deployable emergency communication systems are a backbone solution for replacing damaged network infrastructures and/or providing high-end services in case of an emergency event. It is important that such systems are up-to-date with the latest mobile netwo ...
Modern trains act as Faraday cages making it challenging to provide high cellular data capacities to passengers. A solution is the deployment of linear cells along railway tracks, forming a cellular corridor. To provide a sufficiently high data capacity, m ...