Summary
In optics, an image is defined as the collection of focus points of light rays coming from an object. A is the collection of focus points made by converging rays, while a virtual image is the collection of focus points made by extensions of diverging rays. In other words, a virtual image is found by tracing real rays that emerge from an optical device (lens, mirror, or some combination) backward to perceived or apparent origins of ray divergences. In diagrams of optical systems, virtual rays (forming virtual images) are conventionally represented by dotted lines, to contrast with the solid lines of real rays. Because the rays never really converge, a virtual image cannot be projected onto a screen by putting it at the location of the virtual image. In contrast, a real image can be projected on the screen as it is formed by rays that converge on a real location. A real image can be projected onto a diffusely reflecting screen so people can see the image (the image on the screen plays as an object to be imaged by human eyes). A plane mirror forms a virtual image positioned behind the mirror. Although the rays of light seem to come from behind the mirror, light from the source only exists in front of the mirror. The image in a plane mirror is not magnified (that is, the image is the same size as the object) and appears to be as far behind the mirror as the object is in front of the mirror. A diverging lens (one that is thicker at the edges than the middle) or a convex mirror forms a virtual image. Such an image is reduced in size when compared to the original object. A converging lens (one that is thicker in the middle than at the edges) or a concave mirror is also capable of producing a virtual image if the object is within the focal length. Such an image will be magnified. In contrast, an object placed in front of a converging lens or concave mirror at a position beyond the focal length produces a real image. Such an image will be magnified if the position of the object is within twice the focal length, or else the image will be reduced if the object is further than twice the focal length.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (7)
MICRO-517: Optical design with ZEMAX
Introduction to computer-aided design of optical systems using "ZEMAX OpticStudio" optical design software. Principles of optical systems design and performance analysis with geometrical optics and ra
MICRO-561: Biomicroscopy I
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.