The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:
a point spectrum, consisting of the eigenvalues of ;
a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of a proper dense subset of the space;
a residual spectrum, consisting of all other scalars in the spectrum.
This decomposition is relevant to the study of differential equations, and has applications to many branches of science and engineering. A well-known example from quantum mechanics is the explanation for the discrete spectral lines and the continuous band in the light emitted by excited atoms of hydrogen.
Let X be a Banach space, B(X) the family of bounded operators on X, and T ∈ B(X). By definition, a complex number λ is in the spectrum of T, denoted σ(T), if T − λ does not have an inverse in B(X).
If T − λ is one-to-one and onto, i.e. bijective, then its inverse is bounded; this follows directly from the open mapping theorem of functional analysis. So, λ is in the spectrum of T if and only if T − λ is not one-to-one or not onto. One distinguishes three separate cases:
T − λ is not injective. That is, there exist two distinct elements x,y in X such that (T − λ)(x) = (T − λ)(y). Then z = x − y is a non-zero vector such that T(z) = λz. In other words, λ is an eigenvalue of T in the sense of linear algebra. In this case, λ is said to be in the point spectrum of T, denoted σp(T).
T − λ is injective, and its range is a dense subset R of X; but is not the whole of X. In other words, there exists some element x in X such that (T − λ)(y) can be as close to x as desired, with y in X; but is never equal to x. It can be proved that, in this case, T − λ is not bounded below (i.e. it sends far apart elements of X too close together).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dans ce cours on définira et étudiera la notion de mesure et d'intégrale contre une mesure dans un cadre général, généralisant ce qui a été fait en Analyse IV dans le cas réel.
On verra aussi quelques
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional.
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if either has no set-theoretic inverse; or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, is the identity operator. By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on .
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
Projection-based reduced order models (ROM) based on the weak form and the strong form of the discontinuous Galerkin (DG) method are proposed and compared for shock-dominated problems. The incorporation of dissipation components of DG in a consistent manne ...
The Large Charge sector of Conformal Field Theory (CFT) can generically be described through a semiclassical expansion around a superfluid background. In this work, focussing on U(1) invariant Wilson-Fisher fixed points, we study the spectrum of spinning l ...
This thesis focuses on English invention drawings between 1750 and 1850. These visual documents offer a perspective on a technical aesthetic linked to the rise of English machinery at the turn of the 19th century. In this work, I focus on two specific corp ...