En mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base.
En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés.
Soit une algèbre de Banach unifère sur le corps des nombres complexes. Le spectre d'un élément de , noté , est l'ensemble des nombres complexes pour lesquels l'élément n'admet pas d'inverse dans .
Si est un idempotent (c'est-à-dire ) différent de 0 et 1, alors
Si est une fonction entière alors : c'est le théorème de l'application spectrale. La preuve est élémentaire dans deux cas particuliers :
Dans le cas où est l'algèbre , il suffit de trigonaliser la matrice .
Dans le cas où est un polynôme, il suffit, pour un complexe fixé, d'appliquer à le polynôme sous forme factorisée pour voir que équivaut à donc à
valeur spectrale
On définit le spectre d'un opérateur borné sur un espace de Banach complexe X comme son spectre lorsqu'on considère cet opérateur comme étant un élément de l'algèbre de Banach des opérateurs bornés sur X.
Plus explicitement, si on note par l'application identité de , qui est l'élément unité de , alors le spectre de l'opérateur linéaire borné est l'ensemble des nombres complexes pour lesquels l'opérateur n'admet pas d'opérateur inverse borné.
En appliquant le théorème de Liouville (version vectorielle) à sa résolvante, on montre que tout opérateur borné sur un espace de Banach complexe a un spectre non vide (alors qu'il peut n'avoir aucune valeur propre comme, sur l'espace de Hilbert L(R), l'opérateur unitaire U défini par Uf(t) = ef(t) ou l'opérateur hermitien H défini par Hf(t) = f(t)/(1 + |t|) ou encore, sur L([0, 1]), l'opérateur compact de Volterra). C'est donc via cette notion de spectre qu'on généralise le fait que tout endomorphisme d'un espace vectoriel complexe de dimension finie (ou toute matrice carrée à coefficients complexes) admet des valeurs propres.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
Ce cours ambitionne de présenter les mathématiques de la mécanique quantique, et plus généralement de la physique quantique. Il s'adresse essentiellement aux physiciens, ou a des mathématiciens intére
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Un endomorphisme normal est un opérateur d'un espace de Hilbert qui commute avec son adjoint. Soient H un espace de Hilbert (réel ou complexe) et u un endomorphisme de H, d'adjoint u*. On dit que u est normal si Les endomorphismes autoadjoints sont normaux (cas u* = u). Les endomorphismes antiautoadjoints sont normaux (cas u* = –u). Les isométries vectorielles sont des endomorphismes normaux (cas u* = u).
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Explore l'approximation semi-classique pour le propagateur d'énergie fixe en physique quantique, en mettant l'accent sur la pénétration de la barrière et les points de selle.
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
New York2024
, ,
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
SPRINGER2023
,
The Lizorkin space is well suited to the study of operators like fractional Laplacians and the Radon transform. In this paper, we show that the space is unfortunately not complemented in the Schwartz space. In return, we show that it is dense in C0(Double- ...