In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.
The ring of integers of a number field K, denoted by OK, is the intersection of K and A: it can also be characterised as the maximal order of the field K. Each algebraic integer belongs to the ring of integers of some number field. A number α is an algebraic integer if and only if the ring is finitely generated as an abelian group, which is to say, as a -module.
The following are equivalent definitions of an algebraic integer. Let K be a number field (i.e., a finite extension of , the field of rational numbers), in other words, for some algebraic number by the primitive element theorem.
α ∈ K is an algebraic integer if there exists a monic polynomial such that f(α) = 0.
α ∈ K is an algebraic integer if the minimal monic polynomial of α over is in .
α ∈ K is an algebraic integer if is a finitely generated -module.
α ∈ K is an algebraic integer if there exists a non-zero finitely generated -submodule such that αM ⊆ M.
Algebraic integers are a special case of integral elements of a ring extension. In particular, an algebraic integer is an integral element of a finite extension .
The only algebraic integers which are found in the set of rational numbers are the integers. In other words, the intersection of and A is exactly . The rational number a/b is not an algebraic integer unless b divides a. Note that the leading coefficient of the polynomial bx − a is the integer b. As another special case, the square root of a nonnegative integer n is an algebraic integer, but is irrational unless n is a perfect square.
If d is a square-free integer then the extension is a quadratic field of rational numbers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers.
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Covers worst-case complexity, algorithms, and proofs including mathematical induction and recursion.
Explores worst-case complexity, mathematical induction, and algorithms like binary search and insertion sort.
Explores the basics of counting principles, including permutations, combinations, and rules for calculating possible outcomes.
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
2024
, ,
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...
arXiv2023
Let K be a totally real number field of degree n >= 2. The inverse different of K gives rise to a lattice in Rn. We prove that the space of Schwartz Fourier eigenfunctions on R-n which vanish on the "component-wise square root" of this lattice, is infinite ...